【力扣-动态规划入门】【第 12 天】119. 杨辉三角 II

本文介绍了一个简单的算法,用于计算杨辉三角的特定行。通过动态规划的方法,可以在O(rowIndex)的空间复杂度内解决该问题。文章提供了一段Java代码实现,展示了如何利用一个整型数组dp来存储并计算杨辉三角的每一项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:119. 杨辉三角 II
难度:简单
天数:第12天,第2/2题

给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

在这里插入图片描述

示例 1:

输入: rowIndex = 3
输出: [1,3,3,1]

示例 2:

输入: rowIndex = 0
输出: [1]

示例 3:

输入: rowIndex = 1
输出: [1,1]

提示:

  • 0 <= rowIndex <= 33

进阶:

你可以优化你的算法到 O(rowIndex) 空间复杂度吗?

来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

class Solution {
    //动态规划 第 12 天 2/2
    public List<Integer> getRow(int rowIndex) {
        //记录第i层的数
        int[] dp = new int[rowIndex+1];
        dp[0] = 1;
        for(int i = 1 ; i <= rowIndex;i++){
            //第i位赋值1
            dp[i] = 1;
            // 倒序计算,
            // 目的:正序的时候,j-1已经被累加过值了,导致中间计算增大
            // 正序计算 for(int j =  1;j < i ;j++) 
            //  i = 3  [1,2,1,1]   
            //  j = 1 [1,3(1+2),1,1] 
            //  j = 2 [1,3,4(3+1),1]
            // 这里位置2就变成了3+1=4,本应该是2+1,所以倒序遍历赋值
            for(int j = i - 1;j > 0 ;j--){
                dp[j] = dp[j-1] + dp[j];
            }
        }
        return Arrays.stream(dp).boxed().collect(Collectors.toList());
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crazy丶code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值