标题:1143. 最长公共子序列
难度:中等
天数:第19天,第2/3题
给定两个字符串
text1
和text2
,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回0
。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,
"ace"
是"abcde"
的子序列,但"aec"
不是"abcde"
的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。
示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
1 <= text1.length, text2.length <= 1000
text1
和text2
仅由小写英文字符组成。
以上来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
//动态规划 第19天 2/3
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
int[][] dp = new int[m+1][n+1];
//0记录配置值
dp[0][0] = 0;
int max = 0;
for(int i = 0;i < m;i++){
for(int j = 0;j < n;j++){
if(text1.charAt(i) == text2.charAt(j)){
//如果相等 当前位置 = text1 i+1前一位(i),text2 j+1前一位(j)记录的长度 + 当前值
dp[i+1][j+1] = dp[i][j] + 1;
}else{
//从text1前一位和text2当前位置 从text2当前位置和text2前一位 这两个记录里边取到最大值
dp[i+1][j+1] = Math.max(dp[i][j+1],dp[i+1][j]);
}
}
}
return dp[m][n];
}
}