【力扣-动态规划入门】【第 19 天】1143. 最长公共子序列

本文介绍了一种使用动态规划解决最长公共子序列问题的方法,通过具体示例展示了如何计算两个字符串的最长公共子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:1143. 最长公共子序列
难度:中等
天数:第19天,第2/3题

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。

示例 2:

输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。

示例 3:

输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:

  • 1 <= text1.length, text2.length <= 1000
  • text1 和 text2 仅由小写英文字符组成。

以上来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

class Solution {
    //动态规划 第19天  2/3
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length();
        int n = text2.length();
        
        int[][] dp = new int[m+1][n+1];
        //0记录配置值
        dp[0][0] = 0;
        int max = 0;
        for(int i = 0;i < m;i++){
           for(int j = 0;j < n;j++){
               if(text1.charAt(i) == text2.charAt(j)){
                    //如果相等   当前位置 = text1 i+1前一位(i),text2 j+1前一位(j)记录的长度 + 当前值
                    dp[i+1][j+1] = dp[i][j] + 1;
               }else{
                    //从text1前一位和text2当前位置    从text2当前位置和text2前一位  这两个记录里边取到最大值
                    dp[i+1][j+1] = Math.max(dp[i][j+1],dp[i+1][j]);
               }
           }
        }
        return dp[m][n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crazy丶code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值