标题:343. 整数拆分
难度:中等
天数:第21天,第2/3题
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。
以上来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
//动态规划 第21天 2/3
public int integerBreak(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
for(int i = 2;i <= n; i++){
for(int j = i - 1; j >= 1;j--){
//从记录的三个钟选取一个最大值 例 i = 10 j = 6
//1.dp[i] 当前最大值 例 dp[10] = 3 * 3 * 4 或者 5 * 5
//2.dp[j]*(i-j) 记录的[j]位置最大值 *(i-j) 例: dp[6] * (10 - 6)
//3.j*(i-j) 只拆分成两个数 j 和 i-j 乘积 6 * (10 - 6)
dp[i]= Math.max(dp[i], Math.max(dp[j] * (i - j), j*(i-j)));
}
}
return dp[n];
}
}