【力扣-动态规划入门】【第 21 天】343. 整数拆分

本文介绍了一种使用动态规划解决整数拆分问题的方法,目标是将给定的正整数拆分为至少两个正整数之和,使得这些整数的乘积最大化。通过示例展示了当输入为10时如何得到最大乘积36的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:343. 整数拆分
难度:中等
天数:第21天,第2/3题

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

说明: 你可以假设 不小于 2 且不大于 58。

以上来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

class Solution {
     //动态规划 第21天 2/3
    public int integerBreak(int n) {
        int[] dp = new int[n + 1];
        dp[1] = 1;
        for(int i = 2;i <= n; i++){
            for(int j = i - 1; j >= 1;j--){
                //从记录的三个钟选取一个最大值 例  i = 10  j = 6
                //1.dp[i]          当前最大值 例  dp[10] =  3 * 3 * 4 或者 5 * 5
                //2.dp[j]*(i-j)    记录的[j]位置最大值 *(i-j) 例:  dp[6] * (10 - 6)
                //3.j*(i-j)        只拆分成两个数  j 和  i-j  乘积  6 * (10 - 6)
                dp[i]= Math.max(dp[i], Math.max(dp[j] * (i - j), j*(i-j)));
            }
        }
        return dp[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crazy丶code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值