求树的直径算法以及证明

这篇博客详细介绍了利用两次深度优先搜索(DFS)或广度优先搜索(BFS)寻找树的直径的方法,并提供了正确性证明。首先,从任意节点S开始进行BFS得到各节点距离,然后选取距离最大的节点P再次进行BFS,接着选取新的最大距离节点Q,PQ即为树的一条直径。证明过程中通过反证法,假设AB为直径但长度大于PQ,通过分析路径交点和无交点两种情况,推导出矛盾,从而证明PQ为直径的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
以下为两次dfs(bfs)的做法以及正确性证明。

算法步骤
(1)任取树上一点S,以S为源点BFS得S到各个顶点的d值;
(2)取d值最大者之一为P,再以P为源点BFS得P到各个顶点的d值;
(3)再取d值最大者之一为Q,PQ为树的其中一条直径。
算法的时间复杂度为两次BFS用时,即 2O(V+E)2O(V+E)2O(V+E).

正确性证明:

假设AB为树的直径,且|AB|>|PQ|.
(1)若P为A或者B,则PQ=AB,|AB|=|PQ|,矛盾;
(2)若PQ与AB相交,设交点为C,如图
在这里插入图片描述

根据算法操作(2),∣PQ∣≥∣PA∣,∣PQ∣≥∣PB∣|PQ|\geq|PA|,|PQ|\geq|PB|PQPA,PQPB,
减去公共部分得 ∣CQ∣≥∣CA∣,∣CQ∣≥∣CB∣|CQ|\geq|CA|,|CQ|\geq|CB|CQCA,CQCB,
对于∣AQ∣=∣AC∣+∣CQ∣≥∣AC∣+∣CB∣=∣AB∣|AQ|=|AC|+|CQ|\geq|AC|+|CB|=|AB|AQ=AC+CQAC+CB=AB,同理∣BQ∣≥∣AB∣|BQ|\geq|AB|BQAB,
由于AB为直径,且∣AB∣>∣PQ∣|AB|>|PQ|AB>PQ,只能有∣CQ∣=∣CA∣=∣CB∣>∣CP∣|CQ|=|CA|=|CB|>|CP|CQ=CA=CB>CP,
将树视为以C为根的树,设A,B,Q,P所在子树为{A},{B},{Q},{P},
S点在{A},{B},{Q},{P}其中之一,
根据算法操作(1),∣SP∣>∣SA∣|SP|>|SA|SP>SA,S点只能在{A};
∣SP∣>∣SB∣|SP|>|SB|SP>SB,S点只能在{B};
∣SP∣>∣SQ∣|SP|>|SQ|SP>SQ,S点只能在{S};
综上,不存在这样的S点,矛盾;
(3)若PQ与AB无交点,则设MN为两者联络线,如图
在这里插入图片描述

根据算法操作(2),∣PQ∣≥∣PA∣,∣PQ∣≥∣PB∣|PQ|\geq|PA|,|PQ|\geq|PB|PQPA,PQPB,
减去公共部分得 ∣NQ∣≥∣NA∣,∣NQ∣≥∣NB∣|NQ|\geq|NA|,|NQ|\geq|NB|NQNA,NQNB,
容易得 ∣QM∣=∣NQ∣+∣MN∣>∣MA∣|QM|=|NQ|+|MN|>|MA|QM=NQ+MN>MA,
因此,∣BQ∣=∣BM∣+∣QM∣>∣BM∣+∣MA∣=∣AB∣|BQ|=|BM|+|QM|>|BM|+|MA|=|AB|BQ=BM+QM>BM+MA=AB,与AB为树的直径相矛盾;
综上所述,假设不成立,PQ为树的直径.


以下为老师ppt上的证明:
在这里插入图片描述
在这里插入图片描述
反证法,假设v不是直径的一个端点。δ(u,x)≥δ(u,w)\delta(u,x)\geq\delta(u,w)δ(u,x)δ(u,w)的前提是不妨设路径w→uw\rightarrow uwux→ux\rightarrow uxu有公共点,取w=vw=vw=v,而这与算法步骤中δ(u,v)\delta(u,v)δ(u,v)最大相矛盾。
在这里插入图片描述
根据第一点图①不存在,这和我证明的第(3)点对应,但我否定了图①情况后并没有进一步推证uvuvuvxyxyxy存在公共部分(不仅仅是我第(2)点提及只有一个交点)的情形。或者说我的证明分类讨论的对象是算法求解出的PQPQPQ和假设直径ABABAB之间的关系,遗漏了该情形。从∀u\forall uu出发讨论更容易分类。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

u小鬼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值