yolov12训练

1、ultralytics版本为8.3.179

2、设置yaml配置文件(注意文件夹目录格式)

# train: /home/xxx/data/defectsface  # train images (relative to 'path') 128 images
# val: /home/xxx/data/defectsface  # val images (relative to 'path') 128 images
# test: /home/xxx/data/defectsface

###########注意格式(放置数据格式)
# train
#    ---- images
#              ------ *png
#    ---- labels 
#              ------ *txt

#  多个数据集混合使用
train: 
  - /home/xxx/data/blackwhite  # train images (relative to 'path') 128 images
#  - /data/defectsface1  # train images (relative to 'path') 128 images
val: 
  - /home/xxx/data/blackwhite  # val images (relative to 'path') 128 images
# test: /data/defectsface
 
nc: 2
 
# Classes
#names: ['scrapingNozzle','black','white','impurityOthers','filiform','mole']
names: ['black','white']
#names: ['scrapingNozzle','impurityOthers','filiform']

3、训练文件,注意训练参数

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
    model=YOLO('./yolo12s.pt')     #yolo12s.pt
    results = model.train(
    # data='./data_other.yaml',     #数据集配置文件的路径
    data='./data_blackwhite.yaml',  #数据集配置文件的路径
    warmup_epochs=10, #学习率预热轮次。在训练初期逐步提高学习率以避免震荡
    epochs=200,      #训练轮次总数
    batch=16,        #批量大小,即单次输入多少图片训练 m:6 s:16
    imgsz=1408,     #训练图像尺寸
    scale=0.1,       #S:0.9 L:0.9 X:0.9 图像缩放比例
    fliplr=0.4,      #图像水平翻转概率
    mosaic=0.5,      #Mosaic数据增强使用概率(0-1)
    mixup=0.5,       #Mixup数据增强使用概率
    hsv_h=0,         #图像色调(Hue)增强幅度(范围0-0.1)  
    hsv_s=0,          #图像饱和度(Saturation)增强幅度(范围0-1)
    hsv_v=0.05,         #图像亮度(Value)增强幅度(范围0-1)
    workers=8,         #加载数据的工作线程数
    device= "0,1",     #指定训练的计算设备,无nvidia显卡则改为 'cpu'
    optimizer='SGD',   #训练使用优化器,可选 auto,SGD,Adam,AdamW 等
    amp= False,        #True 或者 False, 解释为:自动混合精度(AMP) 训练
    cache=True,        # True 在内存中缓存数据集图像,服务器推荐开启
    pretrained ='./yolo12s.pt',   #预训练权重
    name="./blackwhite"           #保存文件目录(保存在run/detect下)
    # name="./other"
    )

上面的数据增强部分要深思,要根据实际数据的特点和情况进行修改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值