机器学习简单实验(学习或运算)

本文介绍了一个简单的感知器学习算法实现,通过调整学习速率来训练一个能够正确识别逻辑OR运算的感知器模型。该模型使用numpy进行矩阵运算,并通过迭代更新权值以达到正确的分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#a为学习速率,w为权值,neww更新权值
import numpy as np
b = 0
a = 0.5
x = np.array([[0,1,1],[0,1,0],[0,0,0],[0,0,1]])
d = np.array([1,1,0,1])
w = np.array([b,0,0])
def sgn(v):
    if v>0:
           return 1
    else:
           return 0
def comy(myw,myx):
        return sgn(np.dot(myw.T,myx))
def neww(oldw,myd,myx,a):
    return oldw + a*(myd - comy(oldw,myx))*myx
i = 0
for xn in x:
    w = neww(w,d[i],xn,a)
    i += 1
for xn in x:
    print "%d or %d => %d" % (xn[1],xn[2],comy(w,xn))

代码很简单,学习速率变化范围很大时学习准确率都很高。
测试一下:

1 or 1 => 1
1 or 0 => 1
0 or 0 => 0
0 or 1 => 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值