coze一键搞定小红书爆款读书卡片,效率直接拉满!(附保姆级教程)

之前跟大家分享过用coze工作流做文本相关的操作。

最近在小红书上看到一类做这样读书卡片的笔记,流量还不错。

图片

我一想,这玩意儿coze能做呀。

我就按照上述的样式,简单用coze做了一个工作流,先看效果:

图片

怎么样?是不是有那味了?

虽然比较简单,但基本上该有的都有了,后面可以慢慢优化。

那这篇文章就跟大家分享一下如何用coze高效生成简约的图书卡片。

先看一下整体流程:

图片

拆解一下,简单来说,流程主要就是两大部分:

一是获取图片,也就是图书封面;

二是生成文案,也就是书籍的名称、作者等基本信息。 

然后把两者组合在一张图上,就可以获得一张图文并茂的卡片了。

图片

话不多说,开始。

开始节点

开始节点很简单,只有一个输入变量,也就是书籍名称。

图片

豆瓣搜书节点

然后,为了找到准确的书籍信息,我们在插件市场找“豆瓣搜书”这个插件,从豆瓣上获取书籍基本信息。

图片

这一步的输入就是开始节点输入的图片名称。   

图片

输出可以看下,包括书籍名称、作者、出版社、作者简介等很多信息,基本上够用了。

这里注意输出变量中有一个“url”,这是我们后面要用到的变量。

从豆瓣节点输出后,要分两条路。

一条处理书籍图片,另一条处理文案。

我们先看图片这条路。

缩放节点

因为在上一个节点,我们获取到的图片是“url”也就是链接格式的,而且尺寸也不一致。

所以这里用一个“缩放”节点,用于把图片转换成image格式,并统一尺寸。

图片

这一步有两个输入,一是豆瓣节点获取到的图书封面图的url。    

图片

另一个是图片最大尺寸,如下图所示。

图片

链接读取节点

接着,我们看文案这条路。

这里需要用到“链接读取”插件。

图片

这一步的输入就是豆瓣节点获取到的网页信息,需要通过链接读取插件分析后,给到大模型输出详细内容。

图片

大模型节点

接着,就是大模型节点。

通过大模型,我们可以获取到我们最终想要在图片上呈现的所有信息。

包括:书籍名称、作者、豆瓣评分、名句及翻译。

大模型的输入,就是链接读取的内容。

图片

有的小伙伴可能会有疑问,为什么不直接用开始节点的书籍名称作为大模型的输入?

理论上讲,也可以实现这,但不稳定。

比如一些书籍名称有其他含义的时候,像《好好学习》,大模型可能会识别不出来。

接着,是大模型的提示词,我的提示词如下,可以参考。    

图片

大模型的输出也很重要,这里的输出是要展示在最终的读书卡片上的内容。

图片

好了,到这里图片和文字两条路就都完成了。

画板节点

最后,用“画板”插件,把所有内容组合到一起。

输入就是前面两条路输出的图片和书籍基本信息。   

图片

然后在画板中编辑好图片的样式,将对应的变量配置进来。

图片

最后一步输出,就是画板配置好的图片了。

图片

试运行一下,输入书籍名称,没有报错。    

图片

图片也是我们想要的样式,图片可以直接下载下来。

图片

怎么样,你学会了吗?

当然,后面还可以继续优化。

比如:

  • 优化图片的样式,包括图片中的元素、背景、配色等等

  • 把工作流封装成智能体,让前端应用更加方便

  • ……

这里只是举几个例子,大家主要学思路~

<think>好的,我现在需要帮助用户寻找关于Coze平台的一键生成短视频功能的教程或指南。根据用户提供的引用资料,我需要先仔细分析这些引用内容,看看是否有相关的信息可以提取。 首先,引用[1]提到Coze平台上出现了多种视频自动化玩法,比如认知觉醒、英语单词学习等,并且介绍如何通过DeepSeek + Coze实现新闻播报的自动化生成工作流。用户输入新闻链接后,可以一键生成图文并茂的短视频新闻。这部分内容看起来直接相关,应该详细说明这个工作流程的步骤,并可能需要引用这个来源。 引用[2]介绍了Coze是一个AI Bot开发平台,无论是否有编程基础都可以快速搭建问答Bot,并且可以将Bot发布到社交平台和通讯软件。虽然这里没有直接提到短视频生成,但说明Coze的灵活性和自动化能力,可能间接支持短视频生成功能的实现,比如通过Bot来处理内容生成。 引用[3]提到一个实战教程,手把手教用户实现智能体,将抖音短视频文案转成小红书笔记。虽然这里主要讲的是文案转换,但可能涉及到内容生成和跨平台适配,这可能与短视频生成的工作流程有相似之处。不过引用中也提到Coze只能使用云端,不能本地部署,这可能对用户的使用场景有影响,需要提及。 接下来,我需要整理用户的问题:寻找Coze的短视频自动生成功能的使用教程。根据引用内容,特别是引用[1],可以分步骤说明如何设置自动化生成流程。可能需要包括创建Bot、集成新闻链接处理、使用DeepSeek模型生成内容、配置视频生成参数、发布等步骤。 另外,需要注意用户提到的“一键生成”,所以流程中需要强调自动化,减少手动操作的部分。例如,用户输入链接后自动抓取内容,生成脚本,然后合成视频,整个过程无需更多干预。 还要考虑用户可能的疑问,比如是否需要编程知识。根据引用[2],Coze平台适合无编程基础的用户,因此在教程中应强调这一点,说明通过可视化界面或简单配置即可完成。 同时,引用[3]中的例子虽然不同,但可能提供一些参考,比如处理不同平台的内容格式,可能需要调整视频的格式或风格,这部分可以作为优化建议。 最后,需要确保回答结构清晰,分步骤说明,并正确引用来源,在末尾添加相关问题以帮助用户进一步探索。</think>以下是关于Coze平台“短视频自动生成”功能的实现方法及教程说明: ### 一、核心工作流架构 基于引用[1]的新闻播报案例,自动化生成流程分为: 1. **输入层**:用户提交新闻链接(支持主流新闻网站) 2. **解析层**: - 通过RSS/API抓取新闻正文 - 提取关键信息:$标题\in T$, $正文内容\in C$, $图片集合\in P$ 3. **生成层**: - 调用DeepSeek模型生成播报脚本$S=Model(C)$ - 自动匹配图片$p_i \in P$与文本段落对应关系 4. **合成层**: - 使用TTS引擎生成语音$V=TextToSpeech(S)$ - 合成视频$Output=VideoCompose(P,V,S)$ ### 二、分步骤操作指南 ```python # 伪代码示例(实际通过Coze可视化界面配置) def news_to_video(news_url): # 步骤1:内容抓取 article = fetch_article(news_url) # 引用[1]的链接解析模块 # 步骤2:脚本生成 script = deepseek.generate( prompt=f"将以下新闻转换为1分钟视频脚本:{article.content}" ) # 引用[1][2]的模型调用 # 步骤3:多媒体处理 selected_images = image_selector(article.images) audio = tts.convert(script) # 步骤4:视频合成 video_builder.compose( images=selected_images, audio=audio, subtitles=script ) return video_url ``` ### 三、关键配置项 | 模块 | 配置参数 | 推荐值 | |------|----------|--------| | 脚本生成 | 最大token数 | 800 | | TTS引擎 | 语音风格 | 新闻播报腔 | | 视频合成 | 分辨率 | 1080x1920 | | 转场效果 | 过渡时长 | 0.5秒 | ### 四、优化建议 1. 添加多语种支持:通过修改模型prompt实现$L={en,zh,ja,...}$[^2] 2. 增加数据验证模块:检测$\exists p\in P$是否符合内容安全规范 3. 部署自动发布通道:配置$\lambda$函数实现视频上传到抖音/小红书[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值