在 Kubernetes (K8s) 集群中实现有效的监控与告警是确保集群稳定性、性能以及及时响应潜在问题的关键。以下是 K8s 监控与告警配置的最佳实践,涵盖了监控工具的选择、告警规则的配置、数据存储与可视化等方面。
1. 选择合适的监控工具
Kubernetes 生态系统有多种监控工具可供选择。常见的监控工具包括:
Prometheus + Grafana:最常见的组合,Prometheus 用于数据采集与存储,Grafana 用于数据可视化。Prometheus 通过 kube-state-metrics、node-exporter 和 cAdvisor 等导出器采集 Kubernetes 集群的各类指标数据。
Kubernetes Metrics Server:轻量级的监控工具,主要用于监控节点和 Pod 的资源使用情况(CPU、内存等),适合于水平自动扩展(HPA)等场景。
Elasticsearch + Fluentd + Kibana (EFK):适用于日志的聚合和搜索,能为故障排查和事件记录提供支持。
Datadog / New Relic / Prometheus Operator:商用和企业级监控工具,提供更多集成与开箱即用的功能。 选择工具时应考虑以下因素:
集群规模:大型集群应选择支持高可用和水平扩展的工具(如 Prometheus Operator)。
数据存储:确保有合适的存储后端来存储监控数据,避免数据丢失或性能瓶颈。 监控覆盖面:工具是否覆盖集群、应用、网络、存储等各个方面的指标。
2. 监控数据收集
为了全面监控 Kubernetes 集群,你需要收集以下几类指标:
Kubernetes 控制平面(Control Plane):包括 API Server、Scheduler、Controller Manager 等的健康状况和性能。
节点(Node):包括节点的 CPU、内存、磁盘和网络使用情况。
Pod 和容器(Pod & Container):监控每个 Pod 和容器的资源使用情况,状态、重启次数等。<