吴恩达 深度学习 卷积神经网络 特殊应用:人脸识别和神经风格转换

博客围绕深度学习展开,重点介绍人脸识别,包括人脸验证和识别的模式。还提及One - Shot Learning单样本多分类学习、Siamese Network获取人脸特征、Tripiet损失计算,以及面部验证与二分类方法。此外,涉及神经风格转移和一维、三维卷积操作等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.人脸识别

人脸验证 1:1

人脸识别 1:N

 

2.One-Shot Learning

单样本多分类学习

 

3.Siamese Network

通过Siamese网络得到一个人脸的128维特征

计算

如果值很大,则不是一个人

否则,是一个人

 

4.Tripiet损失

数据集:关于1K个人的10K个图片,P与A关于同一人的样本,N与A关于不同人的样本

一组Tripiet损失

总损失

 

5.面部验证与二分类

将不同样本的特征值通过计算得到的结果与阙值比较得到Y

 

6.神经风格转移

在某一层中选出一个单元,找出能够最大程度激活的九张图片,反复挑选

代价函数:

K,K′代表不同的通道1...n_c

 

7.一维、三维卷积操作

保持输入和过滤器通道数一致

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值