51. N皇后;剑指 Offer 51. 数组中的逆序对

本文介绍了解决N皇后问题的递归算法,通过回溯法寻找所有可能的解决方案,并探讨了如何在一个整数数组中计算逆序对总数的方法,使用归并排序优化计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

示例:

输入: 4
输出: [
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。


 

提示:


    皇后,是国际象棋中的棋子,意味着国王的妻子。皇后只做一件事,那就是“吃子”。当她遇见可以吃的棋子时,就迅速冲上去吃掉棋子。当然,她横、竖、斜都可走一到七步,可进可退。(引用自 百度百科 - 皇后 )

class Solution {
    vector<vector<string>> res;
    vector<string>path;
public:
    vector<vector<string>> solveNQueens(int n) {
        if(n<=0)return {};
        path.resize(n,string(n,'.'));
        backTrack(0,n);
        return res;
    }
    void backTrack(int i,int n){
        if(n==i){
            res.push_back(path);
            return;
        }
        for(int j=0;j<n;++j)          
            if(match(path,i,j)){
                path[i][j]='Q';
                backTrack(i+1,n);
                path[i][j]='.';
            }
    }
    bool match(vector<string>&path,int m,int n){
        for(int i=0;i<path.size();++i)
            if(i==n)continue;
            else if(path[m][i]=='Q')return false;
        for(int i=0;i<path.size();++i)
            if(i==m)continue;
            else if(path[i][n]=='Q')return false;
        for(int i=m+1,j=n+1;i<path.size()&&j<path.size();++i,++j)
            if(path[i][j]=='Q')return false;
        for(int i=m-1,j=n-1;i>=0&&j>=0;--i,--j)
            if(path[i][j]=='Q')return false;
        for(int i=m+1,j=n-1;i<path.size()&&j>=0;++i,--j)
            if(path[i][j]=='Q')return false;
        for(int i=m-1,j=n+1;i>=0&&j<path.size();--i,++j)
            if(path[i][j]=='Q')return false;
        return true;
    }
};

 

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

 

示例 1:

输入: [7,5,6,4]
输出: 5

 

限制:

0 <= 数组长度 <= 50000

class Solution {//归并排序
public:
    int reversePairs(vector<int>& nums) {
        if(nums.size()<=1)return 0;
        vector<int>dst(nums.size());
        return mergeSort(nums,dst,0,nums.size()-1);
    }
    int mergeSort(vector<int>&nums,vector<int>&dst,int low,int high){
        if(low>=high)return 0;
        int l1=low,l2=(low+high)>>1;
        int r1=l2+1,r2=high;
        int res=mergeSort(nums,dst,l1,l2)+mergeSort(nums,dst,r1,r2);
        int i=low;
        while(l1<=l2&&r1<=r2)
            if(nums[l1]<=nums[r1]){//
                dst[i++]=nums[l1++];
                res+=(r1-l2-1);//
            }
            else
                dst[i++]=nums[r1++];
        while(l1<=l2){
            dst[i++]=nums[l1++];
            res+=(r1-l2-1);//
        }            
        while(r1<=r2)
            dst[i++]=nums[r1++];
        for(int j=low;j<=high;++j)
            nums[j]=dst[j];
        return res;    
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值