现在你总共有 n 门课需要选,记为 0 到 n-1。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。
可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。
示例 1:
输入: 2, [[1,0]]
输出: [0,1]
解释: 总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
示例 2:
输入: 4, [[1,0],[2,0],[3,1],[3,2]]
输出: [0,1,2,3] or [0,2,1,3]
解释: 总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
说明:
输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
你可以假定输入的先决条件中没有重复的边。
提示:
这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
拓扑排序也可以通过 BFS 完成。
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>>GList(numCourses);//1
vector<int>inDegree(numCourses,0);//1
vector<int>res;
for(auto &i:prerequisites)
GList[i[1]].push_back(i[0]),++inDegree[i[0]];
queue<int>q;
for(int i=0;i<inDegree.size();++i)
if(inDegree[i]==0)q.push(i);
while(q.size()){
int qs=q.size();
while(qs--){
auto cur=q.front();
q.pop();
res.push_back(cur);//2
--numCourses;//2
for(auto &i:GList[cur])
if(--inDegree[i]==0)q.push(i);//1
}
}
return numCourses==0?res:vector<int>{};//2
}
};
class Solution {//bfs 超时
vector<vector<bool>>vis;
vector<int>dx={1,0,-1,0};
vector<int>dy={0,1,0,-1};
int res;
public:
int maxDistance(vector<vector<int>>& grid) {
int m=grid.size(),n=grid[0].size();
res=-1;
for(int i=0;i<m;++i)
for(int j=0;j<n;++j)
if(grid[i][j]==0){
int tmp=helper(grid,i,j);
res=max(res,tmp);
}
return res;
}
int helper(vector<vector<int>> &grid,int x,int y){
int m=grid.size(),n=grid[0].size();
vis.clear();//1
vis.resize(m,vector<bool>(n,false));//
queue<pair<int,int>>q;
q.push(make_pair(x,y));
int cnt=0;
while(q.size()){
int qs=q.size();
++cnt;
while(qs--){
auto [i,j]=q.front();
q.pop();
for(int k=0;k<4;++k){
int ii=i+dx[k],jj=j+dy[k];
if(ii<0||ii==m||jj<0||jj==n||vis[ii][jj])continue;
vis[ii][jj]=true;
q.push(make_pair(ii,jj));
if(grid[ii][jj])return cnt;
}
}
}
return -1;
}
};
设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构。
insert(val):当元素 val 不存在时,向集合中插入该项。
remove(val):元素 val 存在时,从集合中移除该项。
getRandom:随机返回现有集合中的一项。每个元素应该有相同的概率被返回。
示例 :
// 初始化一个空的集合。
RandomizedSet randomSet = new RandomizedSet();
// 向集合中插入 1 。返回 true 表示 1 被成功地插入。
randomSet.insert(1);
// 返回 false ,表示集合中不存在 2 。
randomSet.remove(2);
// 向集合中插入 2 。返回 true 。集合现在包含 [1,2] 。
randomSet.insert(2);
// getRandom 应随机返回 1 或 2 。
randomSet.getRandom();
// 从集合中移除 1 ,返回 true 。集合现在包含 [2] 。
randomSet.remove(1);
// 2 已在集合中,所以返回 false 。
randomSet.insert(2);
// 由于 2 是集合中唯一的数字,getRandom 总是返回 2 。
randomSet.getRandom();
class RandomizedSet {
unordered_map<int,int>m;//1
vector<int>v;//1
public:
RandomizedSet() {
}
bool insert(int val) {
if(m.count(val))return false;
v.push_back(val);
m[val]=v.size()-1;
return true;
}
bool remove(int val) {
if(!m.count(val))return false;
int last=v[v.size()-1];//2
swap(m[val],m[last]);//2
swap(v[m[val]],v[m[last]]);//2
m.erase(val);//2
v.pop_back();//2
return true;
}
int getRandom() {
return v[rand()%v.size()];
}
};