判断两个数是否互质;409. 最长回文串;面试题 01.06. 字符串压缩;面试题 17.16. 按摩师

bool gcd(int a,int b){
    if(a==1||b==1)return true;
    if(b==0)return false;
    return helper1(b,a%b);
}

 

给定N和K,求互不相同的正整数x,y,z使得x+y+z=N,且gcd(x,y)=gcd(x,z)=gcd(y,z)=K。

条件:1 ≤N, K≤ 1e18

思路:等式两边除K,得到x'+y'+z'=N'=N/K,且x',y',z'两两互素。

当N'为偶数,直接构造x'=1, y'=N'/2, z' = y'-1满足条件。

当N'为奇数,另x'=1,则y'+z'=N'-1。由于N'-1为偶数且y'和z'互素,必然有y',z'都为奇数。令y'=3,5,..., N' / 2逐个搜索即可。

 

在这里讨论一下N'为奇数时搜索的复杂度。

考虑奇素数pi,如果y'=pi不满足条件,那么必然有z'与pi不互素,也就是pi整除z',从而pi整除pi+z'=N'-1

考虑y'为前15个奇素数p1,...,p15。如果均不满足条件,那么他们的乘积p1p2...p15也整除N'-1。考虑到前15个奇素数的积已经超过了1e18,矛盾。

因此我们搜索到第15个奇素数(53)的时候一定能找到一对满足条件的y'和z'。因此搜索复杂度为O(p15)=O(1)。

 

作者:tuogy
链接:https://www.nowcoder.com/discuss/455801
来源:牛客网
 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值