给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。
说明:
如果存在多种有效的行程,你可以按字符自然排序返回最小的行程组合。例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前
所有的机场都用三个大写字母表示(机场代码)。
假定所有机票至少存在一种合理的行程。
示例 1:
输入: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
输出: ["JFK", "MUC", "LHR", "SFO", "SJC"]
示例 2:
输入: [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出: ["JFK","ATL","JFK","SFO","ATL","SFO"]
解释: 另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"]。但是它自然排序更大更靠后。
class Solution {
vector<string> res_path;
unordered_map<string, vector<string>> sel;
unordered_map<string, vector<bool>> vis;
public:
vector<string> findItinerary(vector<vector<string>>& tickets) {
for (auto &t: tickets) {
sel[t[0]].push_back(t[1]); // !!!邻接表
}
for (auto &s: sel) {
sort(s.second.begin(), s.second.end());
vis[s.first].resize(s.second.size(), false); // !!!记录邻接表visited[from][to]中的to是否已访问过
}
int nums = tickets.size() + 1; // 节点总个数不是tickets.size() << 1
string start = "JFK";
res_path.push_back(start);
backTrack(start, nums - 1);
return res_path;
}
bool backTrack(const string& start, const int& nums) {
if (nums == 0) {
return true;
}
for (int i = 0, end = sel[start].size(); i < end; ++i) {
if (vis[start][i]) continue;
res_path.push_back(sel[start][i]);
vis[start][i] = true;
if (backTrack(sel[start][i], nums - 1)) return true;
vis[start][i] = false;
res_path.pop_back();
}
return false;
}
};
在二维平面上,有一个机器人从原点 (0, 0) 开始。给出它的移动顺序,判断这个机器人在完成移动后是否在 (0, 0) 处结束。
移动顺序由字符串表示。字符 move[i] 表示其第 i 次移动。机器人的有效动作有 R(右),L(左),U(上)和 D(下)。如果机器人在完成所有动作后返回原点,则返回 true。否则,返回 false。
注意:机器人“面朝”的方向无关紧要。 “R” 将始终使机器人向右移动一次,“L” 将始终向左移动等。此外,假设每次移动机器人的移动幅度相同。
示例 1:
输入: "UD"
输出: true
解释:机器人向上移动一次,然后向下移动一次。所有动作都具有相同的幅度,因此它最终回到它开始的原点。因此,我们返回 true。
示例 2:
输入: "LL"
输出: false
解释:机器人向左移动两次。它最终位于原点的左侧,距原点有两次 “移动” 的距离。我们返回 false,因为它在移动结束时没有返回原点。
class Solution {
public:
bool judgeCircle(string moves) {
vector<int> dx = {1, -1, 0, 0}, dy = {0, 0, 1, -1};
unordered_map<char, int> direct = {
{'R', 0}, {'L', 1}, {'U', 2}, {'D', 3}
};
int x = 0, y = 0;
for (auto &m: moves) {
x += dx[direct[m]];
y += dy[direct[m]];
}
return x == 0 && y == 0;
}
};
给定一个字符串 s,你可以通过在字符串前面添加字符将其转换为回文串。找到并返回可以用这种方式转换的最短回文串。
示例 1:
输入: "aacecaaa"
输出: "aaacecaaa"
示例 2:
输入: "abcd"
输出: "dcbabcd"
/*思路
在字符串 s 中找出一个最长的前缀回文串 s1
反转(s减去s1部分)+s 即是答案
*/
class Solution {
public:
string shortestPalindrome(string s) {
int n = s.size();
// 选取一个大于字符集大小的质数作为 base,再选取一个在字符串长度平方级别左右的质数作为 mod,产生哈希碰撞的概率就会很低
int base = 131, mod = pow(10, 9)+7;
long long left = 0, right = 0, mul = 1;
int best = -1;
for (int i = 0; i < n; ++i) {
left = (left * base + s[i]) % mod;
right = (right + mul * s[i]) % mod; // mul
mul = mul * base % mod; //
if (left == right) best = i;
}
string add = (best == n - 1 ? "" : s.substr(best + 1, n));
reverse(add.begin(), add.end());
return add + s;
}
};