
缓存
文章平均质量分 80
写文章的大米
↑↑↑ 欢迎大家点赞、关注、收藏!!!
10 年的 IT 行业老鸟,经历了多个重大项目上线!!!
将持续把 10 年的工作积累分享出来,结交更多志同道合的朋友!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
揭秘 20W 缓存如何扛 2000W 数据?缓存预热+更新+淘汰+过期
所以,在实际工作中,一般会做实时的热点数据的检测。这里,参考下面链接。默认情况下,使用频率最低,则后期命中的概率也最低,所以,将其淘汰。因为,Redis本身不建议保存持久化数据,所以,只作为备选方案。所以,建议创建好实例后修改淘汰策略,减少 OOM 问题的出现。而且,我们更关心长期内经常访问的数据,那么LFU更适合。而且,在短期内访问频率较高,那么LRU更适合;该策略会将最近最少使用的Key淘汰。如果,业务场景中热点数据的。访问频率较高的热点数据。访问频率较高的热点数据。使用的时候,推荐使用。原创 2025-04-03 00:11:04 · 493 阅读 · 0 评论 -
Redis 大 Key 问题,解决之道
表示存储了大量数据的 Key,表示 Key 的值很大,表示这个 Key 对应的 value 占用空间很多的情况。原创 2025-03-27 23:48:17 · 311 阅读 · 0 评论 -
Redis 热 Key 问题的解决之道
将一个热 key 拆分成多个不那么热的 key,在每一个Key后面加一个后缀名,然后把这些key分散到多个实例中。并且,实时的将热点数据同步分发到多个缓存服务器集群中,一旦有的集群打不住了,立刻做切换。热点数据,如果,都被缓存在同一个缓存服务器上,那这个服务器也可能被打挂。这样,用户在查询<淄博烧烤>的时候,先根据用户ID算出一个下标,就是根据一些根据经验,提前的识别出可能成为热key的key,**确实是,**但是,有时候我们并不一定就需要全部的数据。总之,通过缓存的方式,尽量减少用户的访问链路的长度。原创 2025-03-27 23:27:54 · 583 阅读 · 0 评论 -
打破困局:数据库与缓存不一致问题全解析
这种模式的主要方案就是,先写数据库,后删缓存。,可以选择**“先更新数据库,后删除缓存”**的方式,因为,这种方案更加简单。当应用要写入数据时,缓存会先存储数据,并调用写模块将数据写入数据库。这两种模式下,不需要应用自己去操作数据库,缓存自己就把活干完了。假如一个读线程,在读缓存的时候没查到值,他就会去数据库中查询。是由缓存配置一个读模块,它知道如何将数据库中的数据写入缓存。在数据被请求的时候,如果未命中,则将数据从数据库载入缓存。如果,在查询到结果之后,更新缓存之前,数据库被更新了。原创 2025-03-27 20:09:22 · 1158 阅读 · 0 评论 -
缓存穿透/缓存击穿/缓存雪崩 攻防录
这些请求可能随机生成很多Key来请求查询,这些肯定在缓存和数据库中都没有,那就很容易导致缓存穿透针对类似的情况,可以使用一个过滤器。之所以会发生穿透,就是因为缓存没有把那些不存在的值得Key缓存下来,从而导致每次查询都要请求到数据库。然后,从数据库加载,加载完毕,释放锁。,所有请求的都直接访问数据库,造成数据库高负载,影响性能,甚至数据库岩机。为了避免大量的缓存在同一时间过期,可以把不同的key过期时间设置成不同的。这样再出现查询这个key的请求的时候,直接返回null即可。,让数据库处于负载的情况。原创 2025-03-27 17:57:45 · 687 阅读 · 0 评论