- 博客(155)
- 收藏
- 关注
原创 Amazon CloudFront 终极顿悟
步骤 | Route 53 行动 | CloudFront 行动 |试着自己创建一个分发(Distribution)指向S3桶,体验全球加速效果——猫咪图加载速度从3秒变0.3秒,爽感拉满!| 查全球最近仓库地址 → 告诉用户东京Edge IP | 从东京Edge发货(有缓存秒发,无缓存则回美国取货) |日本用户访问你的美国总部网站(慢如蜗牛🐌 → 闪电⚡)→ 把用户导航到最近的 CloudFront 仓库!
2025-06-27 10:15:00
752
原创 AWS认证备考系列 - Routing Policies、Traffic Flow、Route 53 Resolver
就像快递公司既考虑包裹重量(权重),也看目的地(地理),还监控堵车(健康检查)。,分20%流量到测试服务器,感受流量分发的神奇效果!❌ 员工在办公室无法直接查内部域名(因为默认DNS只认公网)❌ 内部服务器无法反向查公网(如财务系统要访问税务局官网)→ 监控全球仓库(服务器)是否着火(每分钟检测)→ 公网用户想查私网域名(如访问公司内网OA。你的EC2服务器在内网(VPC),想查。(还是Resolver IP)→ 内部服务器想查公网(如。,Resolver一肩扛!(在AWS买下公司招牌)
2025-06-27 09:15:00
698
原创 AWS 备考系列:Route 53 顿悟式理解!
现在试着在 AWS 控制台创建一个托管区(Hosted Zone),加一条 Alias 指向你的 S3 静态网站——立刻就能感受到它如何统一管理你的 DNS 世界!
2025-06-26 09:00:00
781
原创 AWS备考:一文说清DNS的本质!
你想找 “张三汽修”(问本地114(本地DNS),它查自己的小本子(缓存)。不知道!本地114去问全球总台(根DNS),问 “.com的查号台在哪?” 得到一个地址。本地114去问.com查号台(TLD DNS),问 “的查号台在哪?” 得到一个地址。本地114去问的专属查号台(权威DNS),问 “www的电话(IP)多少?” 得到最终答案。本地114告诉你地址,并记在自己的小本子上。你开车(浏览器)导航去这个地址(IP)找到张三汽修(网站)!这个比喻帮你瞬间抓住DNS精髓了吗?
2025-06-26 08:00:00
901
原创 AWS概念解析:AWS Storage Gateway
想象一下,你的公司有很多文件和数据存在本地的服务器或硬盘里,但你想把这些数据安全地备份到云上,或者让云和本地设备能轻松共享数据。这时候,Storage Gateway 就派上用场了。:它让企业用最低成本把本地存储和云打通,既保留本地使用的习惯,又享受云的无限空间和安全性。
2025-06-25 09:15:00
226
原创 用大白话解释 AWS EC2 放置组(Placement Group)
咱们用大白话和比喻来解释 AWS EC2 放置组,帮你轻松理解这个概念,助力备考!理解了这些摆放策略背后的逻辑和适用场景,考试和工作选择时就心里有谱啦!,让你告诉 AWS 管理员怎么摆你的设备才最合适!有时候你对自己“机器设备”怎么摆放有。
2025-06-25 08:28:47
505
原创 AWS: KMS 和 Secrets Manager 的区别
功能点KMS管理对象加密密钥(Key)机密数据(Secrets,如密码)能否加解密✅(你传数据给它加解密)❌(它调用 KMS 但你不能加解密别的内容)是否保存内容❌ 你自己保存加密后的内容✅ 它帮你存储并管理敏感内容自动轮换支持❌ 手动✅ 自动轮换密码主要用途通用数据加密服务存储和管理密码/API 密钥等是否依赖对方❌✅ 内部使用 KMS 来加密你的 Secrets。
2025-06-24 08:30:00
484
原创 AWS IAM 身份认证和密钥管理
工具名类比主要用途面向场景Cognito登录注册模块外包App 用户认证面向外部用户(B2C)托管的微软AD员工账号管理企业/混合云用户AWS SSO一次登录访问所有系统多账号统一登录与权限管理多账号企业/团队KMS中央密钥保险箱加密解密、密钥管理所有 AWS 加密功能自动换密码的保险柜存储/自动轮换敏感信息(密码等)动态密码/API 管理CloudHSM自己带锁的物理保险柜自主管理加密密钥(硬件级)高安全/合规(如银行)
2025-06-24 08:00:00
717
原创 AWS VPC(虚拟私有云)核心知识点笔记
题型正确答案理由Default route 的目标?A.0.0.0.0/0表示所有非本地地址新建子网绑定的路由表?默认绑定主路由表没公网 IP 的实例能 SSH 吗?A. 否没公网 IP 无法从外部连入运行中实例如何加公网 IP?B. 分配 EIP → 绑定 ENI这是唯一可行方案状态检测过滤的组件?记住 SG 是 statefulNAT Gateway 必须与 EC2 不同子网?✅ 是一个公有子网代理一个私有子网VPC peering 要实现通信?A + D。
2025-06-23 08:45:00
874
原创 AWS 如何让某个子网真正访问公网?(涉及 IGW + 路由表 + 公网 IP 三件套)
子网要出门:得有大门(IGW)、指路牌(路由表)、身份证(公网 IP)”“让内网能访问外网但又不被访问:公有 NAT + 私有子网 + 路由表指向 NAT”
2025-06-23 08:30:00
1427
原创 AWS认证系列:考点解析 - cloud trail,cloud watch,aws config
服务名监控对象记录内容是否实时触发是否做合规判断CloudTrail人(API 调用)谁做了什么操作❌ 事后查阅✅(可配合 Config)CloudWatch系统(资源指标)CPU、内存、错误率、日志等✅ 支持报警触发❌AWS Config资产状态资源配置变化 & 是否合规✅ 可检测不合规✅ 合规规则支持。
2025-06-22 15:59:09
828
原创 AWS- SAA认证:VPC、子网、ENI
VPC 是网络的根,Subnet 是局域网片区,ENI 是 EC2 的网口,Security Group 和 NACL 分别控制楼门和街区进出。
2025-06-22 00:30:58
474
原创 亚马逊认证考试系列 - 第一部份:基础服务 - AWS SAA C03
下面我针对**第一部分:基础服务(20%)**展开讲解,按照让零基础的人也能理解的目标逐步深入。
2025-06-21 23:43:55
828
原创 一文讲透AWS的IAM
摘要:IAM权限管理可以通过公司门禁系统类比理解。User(用户)对应员工个人,Group(用户组)相当于部门,方便批量管理权限。Policy(策略)是具体的权限清单,可以附加给用户、组或角色。Role(角色)则是临时身份,供外包人员或AWS服务使用。例如,开发人员加入开发者组获得相应权限,而CI工具则通过Assume Role临时获取上传权限。这种结构实现了灵活可控的权限管理。(149字)
2025-06-08 08:00:00
314
转载 C语言:数据的存储
本文详细介绍了数据类型的基本分类,包括整型、浮点型、构造类型、指针类型和空型,并深入探讨了整型和浮点型在内存中的存储方式。整型数据在内存中以补码形式存储,文章通过实例演示了正数和负数在内存中的存储形式,并解释了原码、反码和补码的概念。此外,文章还介绍了大小端字节序的概念,并通过代码示例展示了如何判断系统的字节序。对于浮点型数据,文章解析了其在内存中的存储结构,帮助读者深入理解浮点数的存储机制。通过图表和代码示例,文章清晰地展示了这些复杂概念的实际应用。
2025-05-19 08:20:42
35
原创 一文讲清 AWS IAM涉及的核心概念!
本文主要介绍了AWS中的身份与访问管理(IAM)及相关服务。首先,IAM用户组(User Groups)通过部门级别的权限模板简化了权限管理。其次,IAM角色与可信实体(Trusted Entity)用于临时访问权限,确保安全访问。AWS提供了多种加密服务,如KMS、CloudHSM和Secrets Manager,满足不同安全需求。此外,AWS Directory Service支持与微软生态的集成,特别是Active Directory。最后,Amazon Cognito通过User Pool和Iden
2025-05-18 09:00:00
493
原创 【AWS】从 0 基础直觉性地理解 IAM(Identity and Access Management)
IAM(身份和访问管理)在 AWS 中扮演着类似公司门禁和权限管理系统的角色,控制着对云资源的访问。它通过 Root 用户(公司老板)、IAM 用户(普通员工)、IAM 组(部门)和 IAM 角色(临时工)等概念来分配权限。策略(Policy)以 JSON 文件形式定义,明确谁可以执行哪些操作(Action)以及针对哪些资源(Resource)。日常操作不建议使用 Root 用户,因其权限过大且难以追踪责任。IAM 的核心在于通过细粒度的权限控制,确保安全性和效率。
2025-05-18 08:45:00
189
原创 【忍者算法】最小栈设计:优雅实现O(1)时间获取最小值!| LeetCode 155「最小栈」
本文介绍了如何设计一个最小栈,以在O(1)时间复杂度内实现push、pop、top和getMin操作。通过使用主栈和辅助栈的双栈结构,辅助栈同步记录当前状态下的最小值,确保所有操作的高效性。文章详细解析了设计思路、代码实现、易错点及优化方案,并提供了空间优化版本。此外,还讨论了该设计思想的扩展应用和面试技巧,帮助读者深入理解并掌握这一数据结构设计方法。
2025-05-15 23:05:17
45
原创 【忍者算法】探秘括号匹配:从生活场景理解栈的妙用!|LeetCode 20「有效的括号」
文章探讨了如何使用栈数据结构解决LeetCode 20题「有效的括号」问题。作者通过生活场景引入,解释了栈在处理括号匹配时的自然适用性。文章详细解析了问题的要求,并提供了从初学者思路到优化思路的逐步发展过程。最终,作者给出了一个优雅的Java解决方案,并深入讲解了代码的每个环节,包括前置优化、栈的使用、匹配过程和验证逻辑。此外,文章还指出了常见的易错点,并提供了面试技巧和高级优化建议。通过这篇文章,读者不仅学会了解决括号匹配问题,还理解了栈在处理配对问题中的重要性。
2025-05-15 23:04:21
39
原创 DynamoDB 索引机制,尤其是 GSI 和 LSI 的区别
DynamoDB 是一种 NoSQL 数据库,通过主键(Partition Key 和可选的 Sort Key)组织数据。为了提高查询效率,DynamoDB 支持两种索引:局部二级索引(LSI)和全局二级索引(GSI)。LSI 允许在主键不变的情况下,按不同字段排序查询数据,适用于同一分区内的查询。GSI 则允许完全重新定义主键,适用于全局范围内的多维度查询。LSI 成本较低,但查询范围受限;GSI 查询更灵活,但维护成本较高。选择索引时,若需改变主键结构,使用 GSI;若仅需改变排序方式,使用 LSI。
2025-05-14 09:45:00
741
原创 系统性、直觉性地理解 RDS(关系型数据库服务)核心概念
RDS(Relational Database Service)是亚马逊AWS提供的一种全托管关系型数据库服务,用户无需自行管理数据库的备份、恢复、监控等繁琐任务,类似于雇佣了一个数据库管家。关系型数据库以表格形式存储数据,包含行(记录)、列(属性)和表(数据集合),且每张表必须有主键以唯一标识每一行。SQL是操作关系型数据库的标准语言,常用语句包括SELECT(读取)、INSERT(插入)、UPDATE(更新)和DELETE(删除)。RDS支持多种数据库引擎,如MySQL、MariaDB、PostgreS
2025-05-14 08:15:00
1766
原创 【忍者算法】探秘算法之巅:寻找两个有序数组的中位数!|LeetCode 4「寻找两个正序数组的中位数」
本文探讨了如何在两个有序数组中高效找到中位数的问题。通过将问题转化为寻找合适的分割线,使得两个数组的左半部分都小于右半部分,并且左半部分的元素个数等于或比右半部分多一个。文章详细介绍了使用二分查找的方法来定位这个分割线,并通过代码示例展示了具体实现。该算法的时间复杂度为O(log(min(m,n))),满足了题目要求。文章还分析了易错点和边界条件,并提供了图解以帮助理解算法的核心思想。通过这种方法,读者可以更好地掌握处理类似问题的技巧,并将其应用到其他场景中,如寻找第k小的数或合并有序数组。
2025-05-13 09:00:00
245
原创 【忍者算法】探秘旋转数组:寻找最小值的巧妙之旅!|LeetCode 153「寻找旋转排序数组中的最小值」
本文介绍了如何在旋转排序数组中寻找最小值的算法问题。通过类比太阳温度的升降过程,文章生动地解释了旋转数组的概念。作者详细解析了问题的要求,并逐步引导读者从朴素的遍历方法过渡到更高效的二分查找解决方案。文章提供了Java代码实现,并对代码的每个关键部分进行了深入解析。此外,作者还指出了常见的易错点,并提出了可以应用该思路的类似问题。最后,文章分享了在面试中解释和优化该算法的技巧,并鼓励读者继续深入学习和讨论。整体内容清晰易懂,既有理论分析又有实践指导,适合算法学习者参考。
2025-05-13 00:49:50
50
原创 「内网子网 + NAT 网关 访问外网但不暴露」的经典企业内外网架构
让内网能访问外网但又不被访问:公有 NAT + 私有子网 + 路由表指向 NAT”
2025-05-12 01:31:37
322
原创 AWS VPC 核心笔记(小白向)
题型正确答案理由Default route 的目标?A.0.0.0.0/0表示所有非本地地址新建子网绑定的路由表?默认绑定主路由表没公网 IP 的实例能 SSH 吗?A. 否没公网 IP 无法从外部连入运行中实例如何加公网 IP?B. 分配 EIP → 绑定 ENI这是唯一可行方案状态检测过滤的组件?记住 SG 是 statefulNAT Gateway 必须与 EC2 不同子网?✅ 是一个公有子网代理一个私有子网VPC peering 要实现通信?A + D。
2025-05-12 01:29:01
822
原创 《数据密集型应用系统设计》读书笔记:第十二章
没有完美的系统,只有权衡与组合分布式、事务、流处理等都是从不同角度应对现实复杂性的解法核心维度本书贡献可靠性冗余、复制、容错机制可扩展性分区、分布式架构、无共享设计可维护性模块化系统、幂等、可重放逻辑一致性保障事务、隔离级别、MVCC、共识算法数据流转机制批处理、流处理、ETL、窗口机制未来系统趋势流批融合、HTAP、事件驱动。
2025-04-19 08:30:00
628
原创 《数据密集型应用系统设计》读书笔记:第十一章
Martin 开篇给出定义:流处理 =处理不断到来的数据事件(event stream),并实时更新结果持续运行的程序(不关心“处理完没”)以事件为单位驱动的(而不是一堆文件)通常输出状态变化或中间结果流处理是对实时性要求更高系统的“自然进化”“Exactly-once” 是终极目标,但也最难实现时间不再是绝对的,而是相对的、混乱的Flink 是当前功能最全面的流处理平台Kafka + Flink 构成现代数据平台中非常主流的流处理架构下一章(第12章)是全书最后一章,
2025-04-18 08:15:00
924
原创 《数据密集型应用系统设计》读书笔记:第十章
收集数据 → 处理转换 → 输出结果通常用于大数据量、非实时的分析任务,比如:日志分析数据仓库构建特征提取 & 建模预处理报表生成批处理不是过时技术,而是大数据系统的主力MapReduce 是批处理设计的里程碑,但 Spark 提升了开发效率与性能良好的批处理系统必须是可重放、幂等、模块化的批处理是构建数据仓库、特征平台、风控系统、报表平台等的基石下一章是第11章:流处理系统(Stream Processing)
2025-04-18 08:00:00
803
原创 《数据密集型应用系统设计》读书笔记:第九章
一致性有强有弱,线性一致性是最强但代价最大共识是实现强一致性的前提分布式共识本质上是在“网络不可信”的情况下达成确定的、不可撤销的决议Raft 是工程界的共识首选协议,理解它就能看懂 ZooKeeper、Etcd 等系统“共识不是数据库的功能,而是整个系统的基础结构。下一章进入批处理(第10章),我们从分布式系统的底层一致性问题转向大数据的处理模型:MapReduce、Spark、ETL 架构等等,偏向实际应用与数据流动。
2025-04-17 08:15:00
749
原创 《数据密集型应用系统设计》读书笔记:第八章
当你的系统跨多台机器、多进程,互相协作完成任务时,它就是一个分布式系统。分布式系统的本质,是在一个你永远无法完全知道全局状态的环境中,做出合理决策。CAP、时钟、分区、消息不可靠,这些不是 bug,而是自然法则。接下来是第9章:一致性与共识(Consistency and Consensus),是分布式数据库、Raft、ZooKeeper、区块链等系统的理论基础。
2025-04-17 07:45:00
784
原创 MySQL InnoDB 的 MVCC(多版本并发控制)机制可视化解释
这篇文章是一份,帮助你从整体上理解它是如何实现“读写不阻塞”的。是 InnoDB 用来实现的核心机制。
2025-04-16 08:00:00
290
原创 《数据密集型应用系统设计》读书笔记:第七章
一个事务就是一组操作的组合,这些操作要么全部成功,要么全部失败,系统状态不会处于“中间状态”。ACID事务是构建“正确系统”的基石但在分布式环境中,完美事务 ≠ 高可用性所以实践中需要权衡:局部事务(本地原子性)最终一致性(容忍短暂不一致)幂等性 + 补偿机制Martin 的经典语录:“一致性是系统的可预测性,而事务是达成一致性的强大工具。下一章《第8章:分布式系统的挑战》会深入讨论现实中的网络分区、时钟漂移、CAP 原则等,这些是构建真实可用系统绕不开的“真相”。
2025-04-16 07:30:00
2512
原创 《数据密集型应用系统设计》读书笔记:第六章
将深度解析 ACID 特性、隔离级别、多版本并发控制(MVCC)、分布式事务的挑战等,是理解现代数据库和分布式系统不可跳过的一章。分区系统的难点不在“怎么分”,而在**“之后的一切操作”**如何适配。:一致性哈希(Consistent Hashing)尽量在设计初期就考虑好分区策略,避免后期大手术。由一个路由层记录每个 key 属于哪个分区。
2025-04-15 07:45:00
823
原创 《数据密集型应用系统设计》读书笔记:第五章
维度单主多主无主写入点一个多个任意节点冲突风险无高高实现复杂度低中高一致性强(同步时)低低,最终一致性用例Martin 的核心观点是:复制是高可用的基础,但必须明确你要哪种一致性、能接受多少冲突、系统是否能“自动和解”。下章是《第6章:分区(Sharding)》,会讲如何拆分大表/大集群为多个子集,是分布式数据库/消息系统/存储系统设计的核心之一。
2025-04-15 07:30:00
843
原创 《数据密集型应用系统设计》读书笔记:第四章
演化是数据系统的生命力Martin 说得很狠的一句话是:“不是支持演化的数据系统,都只能活在短命的原型阶段。下章是《第5章:复制》,会深入讲主从复制、多主复制、复制延迟、冲突解决等问题,内容开始涉及分布式的核心机制了。
2025-04-14 07:45:00
646
原创 《数据密集型应用系统设计》读书笔记:第三章
结构类型优点缺点适用场景B-Tree查询快、支持范围查找写入有磁盘随机 I/O关系数据库、分页、事务LSM Tree写快、顺序写查询慢,复杂合并写多读少系统、日志型系统行式存储一次取全行快聚合查询慢OLTP、用户系统列式存储聚合快查询整行慢OLAP、报表、数据仓库Martin 的核心观点:“没有万能的数据结构,只有权衡取舍。你需要根据“读多还是写多”、“随机访问还是顺序处理”、“是数据更新还是追加写入”来选择底层结构。
2025-04-14 07:30:00
1235
原创 《数据密集型应用系统设计》读书笔记:第二章
关系模型(Relational Model)起源:1970年,E.F. Codd 提出,SQL就是它的查询语言。特点:表格形式(行-列)强类型、模式严格(schema)支持 JOIN、事务(ACID)优点抽象能力强(范式、约束)有丰富的查询语言(SQL)工具和社区成熟缺点模式变更困难(需要迁移)对复杂嵌套结构支持差(比如文章下的评论、用户信息)数据模型 ≠ 存储格式,而是系统的结构化思维选择模型是权衡:结构灵活性 vs 查询复杂性声明式查询语言是生产力工具。
2025-04-13 12:50:55
667
原创 《数据密集型应用系统设计》读书笔记:第一章
系统的瓶颈在数据,比如读写速度、存储量、并发访问。存、取、传、处理数据。典型例子:数据库、搜索引擎、电商网站、社交平台、广告系统、日志平台等。Martin 想传达的不是某个技术技巧,而是系统设计要从这三大目标反推实现手段,而不是被技术细节牵着走。
2025-04-13 12:48:36
270
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人