Vector | Graph:蚂蚁首个开源Graph RAG框架设计解读
引入知识图谱技术后,传统RAG链路到Graph RAG链路会有什么样的变化,如何兼容RAG中的向量数据库(Vector Database)和图数据库(Graph Database)基座,以及蚂蚁的Graph RAG开源技术方案和未来优化方向。
检索增强生成(RAG:Retrieval Augmented Generation)技术旨在把信息检索与大模型结合,以缓解大模型推理“幻觉”的问题。近来关于RAG的研究如火如荼,支持RAG的开源框架也层出不穷,并孕育了大量专业领域的AI工程应用。我们设计了一个通用的开源RAG框架,以兼容未来多样化的基础研究建设和工程化应用诉求。
1. 概述
RAG的目标是通过知识库增强内容生成的质量,通常做法是将检索出来的文档作为提示词的上下文,一并提供给大模型让其生成更可靠的答案。更进一步地,RAG的整