如何为企业RAG选择合适的数据存储方式
摘要:
本文讨论了矢量数据库、图数据库和知识图谱在解决信息检索挑战方面的重要性,特别是针对企业规模的检索增强生成(RAG)。
看看海外人工智能企业Writer是如何利用知识图谱增强企业级RAG。
要点概要:
-
矢量数据库高效存储数据,但缺乏上下文和关联信息。
-
图数据库优先考虑数据点之间的关系,受益于关系结构。
-
知识图谱在语义存储方面表现出色,由于其能够编码丰富的上下文信息,使其成为RAG的理想选择。
-
选择正确的数据存储技术对于成功的企业级RAG至关重要。
-
企业级知识检索取决于基础数据库技术的准确性和效率。
-
知识图谱在企业级RAG的搜索和检索任务中胜过矢量数据库和图数据库。
-
知识图谱基础与语言模型的结合显著提升了