1001. Maximum Multiple
1=12+13+16=13+13+13=12+14+141=12+13+16=13+13+13=12+14+14.
1002. Balanced Sequence
对于一个括号序列,令nn是长度,是前缀最小值(‘(’ +1,’)’-1),sumsum是最后的和,那么答案就是m−sum+2mm−sum+2m。现在这个nn和sum都是定值,只要最大化就好了。
每个串,把匹配后的搞掉之后,会得到一个pair (a,ba,b),表示aa个左括号接上个右括号,把(a,ba,b)按照一定顺序排一排依次接起来就知道mm的最大值了。
1003. Triangle Partition
求个凸包,然后选择凸包一条边,然后找个和ABAB夹角最小的点CC,把当做一个三角形删掉即可。这样做个nn次,显然这样求出来的三角形们是合法的。
1004. Distinct Values
显然可以从左往右贪心,问题转化成求一个区间里的mex,由于区间左右端点都是递增的,用个set维护下即可。
1005. Maximum Weighted Matching
一个显而易见的观察是:按照操作来可以很容易进行dp。于是只要还原出操作序列即可:每次选个度数为2的点删掉,然后加入一条虚边。
表示处理到edgeedge这条边,这条边左端点匹配状态是xx,右端点匹配状态是的最大匹配和方案数。碰到重边的时候merge下即可。
1006. Period Sequence
考虑这个无限长的序列中相等的数si1,si2,...,siksi1,si2,...,sik,考虑i1modn,i2modn,...,ikmodni1modn,i2modn,...,ikmodn,这些构成了一条链。相邻两个位置有个deltadelta,表示下一个相同位置在deltadelta后。
然后考虑这些链,肯定是simodnsimodn一样的数组成的。不妨O(n2)O(n2)枚举这个链的一部分,统计它的贡献。设距离上一个位置是prevprev,距离下一个位置是nextnext,这时候会分成4种情况:
+ 这个prev and next都在[a,b][a,b]内:贡献是一个等差数列乘以若干常数
+ prev部分在[a,b][a,b]里,next全在[a,b][a,b]内:贡献是两个等差数列相乘,然后乘以若干常数
+ prev完全在[a,b][a,b]内,next部分在[a,b][a,b]内:贡献是两个等差数列相乘,然后乘以若干常数
+ prev和next都部分在[a,b][a,b]内:贡献是三个等差数列相乘,然后乘以若干常数
具体等差数列就不列出来了,有std的参考std,没有的找有std的人要。
1007. Chiaki Sequence Revisited
考虑这个数列的差分数列,除了个别项,本质就是:1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,...1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,1,0,...。
可以观测到,这个序列可以这么生成:一开始只有一个11,变成110110,00保持不变。迭代无穷多次后就是这个差分序列。
知道差分序列,可以应用阿贝尔变换,把的前缀和搞成差分序列相关。不妨令差分序列是dada,那么aa的前缀和
利用dada的分形结构,很容易算出s(n)s(n)。
1008. RMQ Similar Sequence
RMQ-Similar实际上就是AA和的笛卡尔树一样,这样我们就有了一个二叉树,然后可以在树上分析了。
考虑到BB中有元素相同的概率是,于是可以假设BB里面元素互不相同,也就是说可以假定是一个排列。
显然,符合笛卡尔树的排列就是这个树的拓扑序列个数,就是。然后显然每个排列期望的和是n2n2,于是答案就是n2∏sizein2∏sizei。
1009. Lyndon Substring
这边有个简单的结论,考虑s=w1w2...wns=w1w2...wn是ss的lyndon factorization,那么的最大值就是ss的最长lyndon substring。证明略,想知道的私信我。
于是你只要会合并两个lyndon factorization就好了。这个是个经典问题,利用lyndon factorization的单调性,只要两个二分就搞定了。
1010. Turn Off The Light
考虑只有一个起点的时候应该怎么做。令起点在,最左边的11在位置,最右边的11在,显然p→s→tp→s→t或者p→t→sp→t→s都是可以的,不妨只考虑p→s→tp→s→t。
显然,先走到ss,中间该取反的就取反,然后从走到tt,该取反的也取反,这些是要走的必要步数。考虑剩下来那些位置中所在的位置为i1,i2,...,imi1,i2,...,im.我们要把这些位置的状态搞对,那么考虑相邻两两配对,来回一趟就可以把这两个都搞定。如果位置是奇数个,最后还需要和tt搞一下。可以证明这样是最优的。
这个过程很容易就可以推广到起点不定的情况,考虑起点和ss和的位置关系。
+ 如果p≤sp≤s,那么pp和之间每个位置在过完p→s→tp→s→t后都是11,剩下部分是个定值,可以直接维护。
+ 如果,显然在pp从慢慢增加到tt的时候,位置的变换也是很好维护的
+ 如果p>tp>t,这个时候显然不如走p→t→sp→t→s逻辑,所以可以在另一种情况下做。
1011. Time Zone
转换成分钟,然后随便算算就好了。