数据结构:n个结点最多可以构建多少棵树

本文探讨了给定n个节点时,可以构建多少种形态不同的树,重点转换为研究n个节点的形态不同的二叉树数量。通过两种计算方案——递推公式(卡特兰数)和利用前序、中序序列,揭示了不同形态二叉树的数量,并介绍了这两种方法如何应用于计算n个节点树的形态计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节要讨论的是当给定 n(n>=0)个结点时,可以构建多少种形态不同的树。

如果两棵树中各个结点的位置都一一对应,可以说这两棵树相似。如果两棵树不仅相似,而且对应结点上的数据也相同,就可以说这两棵树等价。本节中,形态不同的树指的是互不相似的树。

前面介绍过,对于任意一棵普通树,通过孩子兄弟表示法的转化,都可以找到唯一的一棵二叉树与之对应。所以本节研究的题目也可以转化成:n 个结点可以构建多少种形态不同的二叉树。

每一棵普通树对应的都是一棵没有右子树的二叉树,所以对于 n 个结点的树来说,树的形态改变是因为除了根结点之外的其它结点改变形态得到的,所以,n 个结点构建的形态不同的树与之对应的是 n-1 个结点构建的形态不同的二叉树。

如果 tn 表示 n 个结点构建的形态不同的树的数量,bn 表示 n 个结点构建的形态不同的二叉树的数量,则两者之间有这样的关系:tn=bn-1

统计 n-1 个结点可以构建出多少形态不同的二叉树,有两种计算方案。

第一种计算方案

最直接的一种方法就是推理。当 n=0 时,只能构建一棵空树;当 n=2 时,可以构建 2 棵形态不同的二叉树,如图 1(A);当 n=3 时,可以构建 5 棵形态互不相同的二叉树,如图 1(B)。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值