<think>我们已知二叉树的前序遍历和中序遍历,可以唯一确定一棵二叉树,并由此得到后序遍历。思路:1.前序遍历的第一个节点是根节点。2.在中序遍历中找到根节点,则根节点左边是左子树的中序遍历,右边是右子树的中序遍历。3.根据左子树的节点个数,可以在前序遍历中确定左子树的前序遍历和右子树的前序遍历。4.递归处理左子树和右子树。5.在递归构建二叉树的过程中,我们按照后序遍历的顺序(左子树->右子树->根节点)将节点值存入后序遍历数组。但是,题目要求直接生成后序遍历数组,而不需要构建整个二叉树的结构。我们可以通过递归函数直接填充后序遍历数组。具体步骤:假设我们有一个全局数组(或通过参数传递的数组)`postorder`来存储后序遍历结果,以及一个全局索引(或指针)`post_idx`表示当前要填充的位置(注意:由于后序遍历是左右根,所以应该从后往前填充,或者按顺序填充再调整,但这里我们可以在递归中按顺序填充,但是需要确定根节点的位置在最后)。然而,我们也可以这样:后序遍历的顺序是左、右、根。所以当我们递归处理完左子树和右子树后,将根节点放入后序遍历数组的当前位置。但是,由于我们是从前序遍历得到根节点,然后递归左子树和右子树,最后才处理根节点,所以我们可以按照这个顺序直接填充。但是注意:我们构建后序遍历数组时,需要知道整个树的节点数,并且从数组的末尾开始填充(因为根节点在最后)?或者也可以按左子树、右子树、根的顺序依次放入数组,但这样需要知道左子树和右子树的大小,然后确定根节点在数组中的位置。另一种方法:我们可以在递归过程中,每次将根节点放到当前子树对应后序遍历区间的最后一个位置。因此,我们可以传递后序遍历数组的起始和结束位置,但这样比较复杂。这里我们采用一种更简单的方法:递归地构建左右子树,并按照后序遍历的顺序(先左子树,再右子树,最后根节点)将节点值存入数组。我们使用一个全局数组和一个全局索引(从0开始),在递归左子树和右子树后,将根节点存入数组,然后索引递增。这样得到的数组顺序就是后序遍历。然而,这样得到的数组顺序是:先左子树的所有节点(按照后序),然后右子树的所有节点(按照后序),最后根节点。这符合后序遍历的定义。但是,注意:前序遍历数组和中序遍历数组我们如何传递?我们每次递归需要传递当前子树的前序遍历序列和中序遍历序列(在原始数组中的起始位置和长度)。或者传递指针和长度。由于C语言中数组是连续内存,我们可以通过指针和长度来传递子树对应的部分。设计递归函数:voidbuildPost(int*preorder,int*inorder,intn,int*postorder,int*postIndex)参数说明:preorder:当前子树的前序遍历数组的起始指针inorder:当前子树的中序遍历数组的起始指针n:当前子树的节点个数postorder:后序遍历数组(全局)postIndex:当前后序遍历数组的填充位置(指针,因为递归中需要更新)递归过程:1.如果n==0,返回。2.前序遍历的第一个元素preorder[0]就是根节点。3.在中序遍历数组inorder中找到根节点的位置,设为k(即inorder[k]==preorder[0])。那么,左子树的节点个数为k,右子树的节点个数为n-k-1。4.递归构建左子树:buildPost(preorder+1,inorder,k,postorder,postIndex);5.递归构建右子树:buildPost(preorder+1+k,inorder+k+1,n-k-1,postorder,postIndex);6.将根节点存入postorder[*postIndex],然后(*postIndex)++。注意:这样递归后,postorder数组中的顺序就是后序遍历。但是,我们需要考虑如何在中序遍历数组中找到根节点的位置。由于数组中可能有重复值?题目没有说明,通常假设节点值唯一。所以我们可以遍历inorder数组直到找到根节点。例子:前序遍历:[1,2,4,5,3,6,7]中序遍历:[4,2,5,1,6,3,7]后序遍历:[4,5,2,6,7,3,1]递归过程:根节点1,在中序遍历中找到1,位置为3(下标从0开始),则左子树有3个节点(4,2,5),右子树有3个节点(6,3,7)。左子树的前序遍历:从原前序遍历的第二个元素开始,取3个:[2,4,5]左子树的中序遍历:中序遍历中1左边的3个元素:[4,2,5]递归左子树:根节点2,在[4,2,5]中,2的位置是1,左子树节点为1(4),右子树节点为1(5)左子树的左子树:前序遍历[4],中序遍历[4]->递归后得到后序遍历:先处理左子树(无,因为节点个数0),再处理右子树(无),然后放入根节点4->所以后序遍历数组先放4。然后左子树的右子树:前序遍历[5],中序遍历[5]->放入5。然后左子树的根节点2放入。所以左子树部分的后序遍历是[4,5,2]。同理,右子树部分:前序遍历[3,6,7],中序遍历[6,3,7]->根节点3,在[6,3,7]中位置1,左子树[6](1个节点),右子树[7](1个节点)递归左子树:放入6递归右子树:放入7放入3所以右子树部分的后序遍历是[6,7,3]最后放入根节点1。整个后序遍历:[4,5,2,6,7,3,1]代码实现中,需要注意在中序遍历中查找根节点时,如果节点值唯一,遍历即可。但是,这个递归函数需要每次在inorder中线性查找根节点,时间复杂度O(n),整个算法时间复杂度O(n^2)。对于较大的树,可以考虑先用哈希表存储中序遍历的值和索引(但题目要求C语言,且节点值如果是整数,且范围不大,可以用数组哈希,否则就线性查找)。由于题目没有说明节点值的范围,我们假设节点值为整数,且节点个数不会太大,所以采用线性查找。另外,递归函数中,我们每次传递的是当前子树的前序遍历数组的起始位置和中序遍历数组的起始位置,以及节点个数。最后,我们还需要注意递归的终止条件:n==0。编写函数:输入:前序遍历数组pre,中序遍历数组in,节点个数n输出:后序遍历数组post(需要提前分配好空间,大小与n相同)步骤:1.初始化一个索引变量postIndex=0(注意在递归中需要传递它的地址,以便递归中更新)。2.调用递归函数buildPost(pre,in,n,post,&postIndex);3.递归函数结束后,post数组中就是后序遍历结果。注意:这个递归函数中,我们按照左子树、右子树、根的顺序将节点值放入post数组,并且postIndex从0开始递增,所以最后post数组就是后序遍历。但是,我们也可以不用全局索引,而是通过递归函数的返回值?这里我们传递索引的指针。代码实现如下:</think>### 二叉树后序遍历生成代码实现(C语言)
根据二叉树的前序遍历和中序遍历生成后序遍历的核心思路是通过递归重建二叉树结构,然后进行后序遍历输出。以下是完整实现代码:
```c
#include <stdio.h>
#include <stdlib.h>
// 二叉树节点结构
typedef struct TreeNode {
int val;
struct TreeNode* left;
struct TreeNode* right;
} TreeNode;
// 创建新节点
TreeNode* createNode(int value) {
TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode));
newNode->val = value;
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
// 在中序数组中找到根节点位置
int findRootIndex(int inorder[], int start, int end, int rootValue) {
for (int i = start; i <= end; i++) {
if (inorder[i] == rootValue) {
return i;
}
}
return -1; // 未找到
}
// 根据前序和中序重建二叉树
TreeNode* buildTree(int preorder[], int inorder[], int preStart, int preEnd, int inStart, int inEnd) {
if (preStart > preEnd || inStart > inEnd)
return NULL;
// 前序遍历第一个元素是根节点
int rootValue = preorder[preStart];
TreeNode* root = createNode(rootValue);
// 在中序中找到根节点位置
int rootIndex = findRootIndex(inorder, inStart, inEnd, rootValue);
int leftSubtreeSize = rootIndex - inStart;
// 递归构建左子树
root->left = buildTree(
preorder, inorder,
preStart + 1, preStart + leftSubtreeSize,
inStart, rootIndex - 1
);
// 递归构建右子树
root->right = buildTree(
preorder, inorder,
preStart + leftSubtreeSize + 1, preEnd,
rootIndex + 1, inEnd
);
return root;
}
// 后序遍历二叉树并存储结果
void postorderTraversal(TreeNode* root, int result[], int* index) {
if (!root) return;
postorderTraversal(root->left, result, index);
postorderTraversal(root->right, result, index);
result[(*index)++] = root->val;
}
// 释放二叉树内存
void freeTree(TreeNode* root) {
if (!root) return;
freeTree(root->left);
freeTree(root->right);
free(root);
}
// 主函数:生成后序遍历
void getPostorder(int preorder[], int inorder[], int n, int postorder[]) {
TreeNode* root = buildTree(preorder, inorder, 0, n - 1, 0, n - 1);
int index = 0;
postorderTraversal(root, postorder, &index);
freeTree(root);
}
// 测试用例
int main() {
// 示例输入(前序和中序遍历序列)
int preorder[] = {3, 9, 20, 15, 7};
int inorder[] = {9, 3, 15, 20, 7};
const int n = sizeof(preorder) / sizeof(preorder[0]);
// 生成后序序列
int postorder[n];
getPostorder(preorder, inorder, n, postorder);
// 打印结果
printf("生成的后序遍历序列: ");
for (int i = 0; i < n; i++) {
printf("%d ", postorder[i]);
}
printf("\n"); // 输出: 9 15 7 20 3
return 0;
}
```
### 关键步骤说明:
1. **重建二叉树**(`buildTree`函数):
- 前序序列的第一个元素总是当前子树的根节点
- 在中序序列中找到根节点位置,左侧为左子树,右侧为右子树
- 递归处理左子树和右子树[^3]
2. **后序遍历**(`postorderTraversal`函数):
- 遍历顺序:左子树 → 右子树 → 根节点
- 结果按顺序存储到输出数组[^2]
3. **空间管理**:
- 使用`freeTree`释放动态分配的节点内存
- 时间复杂度:$O(n^2)$(可优化为$O(n)$)
- 空间复杂度:$O(n)$
### 算法优化方向:
1. **查找优化**:使用哈希表存储中序序列的值-索引映射,将查找操作从$O(n)$降至$O(1)$
2. **迭代实现**:改用栈替代递归,避免栈溢出风险
3. **直接生成**:不构建完整二叉树,直接在递归过程中填充后序数组