Jetson-Nano系统克隆

本文介绍在Jetson-Nano上将系统及环境配置好以后,如何进行备份和克隆。
具体的流程即备份系统镜像到另一台PC,之后对新的SD卡进行烧录。

1、将SD卡连接到主机

将需要备份的系统SD卡通过读卡器连接主机,输入以下命令

sudo fdisk -l 

即可查看SD卡信息
SD卡信息
其中不难看出 /dev/sdb 即为我们的SD卡,其中1到12是我们SD卡的分区。

2、开始制作系统镜像

在此使用dd命令,关于dd命令的详细说明参看其他博客
系统备份直接使用dd命令,原SD卡存储多大,备份的文件就会有多大,所以进行压缩备份。

sudo dd if=/dev/sdb conv=sync,noerror | gzip -c > ~/parent.img.gz

if后为SD卡名,即指定源文件,noerror代表出错不停止,备份的系统镜像名字为parent,默认在home目录下。
在备份的过程中不会显示进度,可再打开一个控制台输入以下命令查看进度。

sudo pkill -USR1 -n -x dd

正在备份

3、对新的SD卡进行烧录

首先要先格式化新的SD卡。
格式化
在这里,类型要选择 与所有系统和设备兼容(FAT)

之后,利用 Balena-Etcher 对新的SD卡进行烧录

Balena-Etcher 下载链接 提取码:61yy
烧录镜像
烧录大概需要一小时到一个半小时即可完成。

<think>嗯,用户想了解jetson-inference的使用方法或者入门教程。首先,我得回忆一下相关的资料。用户提供的引用中有提到jetson-inference的GitHub仓库,比如引用[1]提到了imagenet-example-2.md,这可能是一个图像分类的例子。所以可能需要引导用户先克隆仓库,然后构建项目。 接下来,用户可能需要安装依赖项。引用[4]提到在Jetson Nano上安装虚拟环境,但jetson-inference通常需要系统级的依赖,比如CMake和Python开发包。所以步骤可能包括安装这些依赖项,然后使用CMake进行构建。 然后,预训练模型的下载也是关键。jetson-inference的仓库提供了下载模型的脚本,用户需要运行download-models.sh,可能需要根据CUDA架构来调整,引用[2]涉及CUDA_ARCH_BIN的设置,不过对于入门教程,可能默认设置就够了,用户不需要手动调整。 接下来,示例应用部分,比如图像分类、物体检测、图像分割。用户提到的引用[1]中的imagenet-example-2.md应该是一个图像分类的例子,可以指导用户使用imagenet.py脚本进行测试。此外,摄像头实时检测也是常见的用例,可能需要用到v4l2-ctl设置摄像头参数,引用[3]中的重启Docker可能是在其他环境中,但Jetson设备上可能不需要Docker,除非用户是在容器中运行。 常见问题部分,用户可能遇到模型下载失败,这时候需要检查网络或者代理;摄像头权限问题需要添加用户到video组;性能优化可以参考引用[2]中的CUDA设置或者TensorRT的构建,比如调整CUDA_ARCH_BIN参数。引用[4]的虚拟环境可能用于Python依赖管理,但jetson-inference可能需要系统Python环境,所以需要提醒用户注意。 相关问题部分,需要覆盖Docker部署、模型训练、性能优化、摄像头配置等,这些都是用户可能进一步想了解的内容。需要确保每个问题都有对应的引用支持,比如Docker相关的问题引用[3],CUDA和TensorRT的问题引用[2],环境配置引用[4]。</think>### Jetson-inference入门教程 Jetson-inference是NVIDIA Jetson平台专用的深度学习推理库,以下是具体使用步骤: 1. **环境准备** - 安装系统依赖: ```bash sudo apt-get install git cmake libpython3-dev python3-numpy ``` - 克隆仓库: ```bash git clone --recursive https://github.com/dusty-nv/jetson-inference ``` 2. **构建项目** ```bash cd jetson-inference mkdir build && cd build cmake ../ make -j$(nproc) sudo make install ``` 构建过程会自动下载预训练模型(需保证网络畅通)[^4] 3. **模型管理** - 手动下载模型(可选): ```bash cd tools ./download-models.sh ``` - 模型存放路径:`data/networks/` 4. **基础示例** - **图像分类**: ```bash imagenet.py images/orange_0.jpg output_0.jpg # 使用ImageNet模型 ``` 支持ResNet-18/50等模型[^1] - **实时检测**: ```bash detectnet /dev/video0 # 调用摄像头 ``` 按`ESC`退出,支持SSD-Mobilenet、YOLO等模型 5. **高级功能** ```python from jetson_inference import detectNet net = detectNet("ssd-mobilenet-v2", threshold=0.5) detections = net.Detect(...) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值