类别不均衡二分类任务

二分类任务且类别极不平衡的情况下,模型在二八分测试集上表现很好而在十折交叉验证中表现差的现象,更可能是由于训练/验证分布不均衡或评价指标不合适所导致的。下面是专门针对类别不平衡下的问题分析和解决建议。


一、问题分析:为什么二八分高而交叉验证低?

1. 样本分布偏差

  • 二八分中测试集可能刚好包含较多的主类(多数类),使得模型预测偏向主类也能取得不错的Accuracy。
  • 十折交叉验证时,每折的数据分布不同,部分折可能主类比例较低,导致模型失衡暴露得更明显。

2. 优化目标函数的问题

  • 如果贝叶斯优化时使用的是 accuracyloss,这类指标对不平衡数据不敏感,容易误导优化方向。
  • 模型可能通过“全预测为多数类”来获得较低损失或较高accuracy,但F1、AUC很低。

二、如何调整优化策略,使模型在十折上表现也好?

✅ 1. 选择更适合不平衡分类的指标作为优化目标

在贝叶斯优化中使用以下之一作为目标:

  • F1-score
  • AUC (Area Under ROC Curve)
  • Balanced Accuracy
  • Matthews Correlation Coefficient (MCC)
from sklearn.metrics import f1_score, roc_auc_score

def objective(trial):
    # 训练 + 验证代码
    ...
    y_true, y_pred = ...  # 从验证集中获取
    return f1_score(y_true, y_pred
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值