SVD为机器学习中会用到降维方法
SVD奇异值分解作为一个很基本的算法,在很多机器学习算法中都有它的身影。SVD奇异值分解是线性代数中一种重要的矩阵分解,是矩阵分析中正规矩阵酉对角化的推广。只需要线性代数知识就可以理解SVD算法,简单实用,分解出的矩阵解释性不强,但不影响它的使用,因此值得研究。
SVD在信号处理、统计学、机器学习等领域有重要应用,比如:LSA(隐性语义分析)、推荐系统、图像处理、自然语言处理和特征压缩(或称数据降维)等。SVD奇异值分解则是谱分析理论在任意矩阵上的推广。
SVD算法概念:
SVD奇异值分解(Singular Value Decomposition)是很多机器学习算法的基石。在某些方面与对称矩阵或Hermite矩阵基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。谱分析的基础是对称阵特征向量的分解,而奇异值分解则是谱分析理论在任意矩阵上的推广。SVD奇异值分解在矩阵理论的重要性不言而喻,它在最优化问题、特征值问题、最小乘方问题、广义逆矩阵、统计学、图像处理和自然语言处理等方面都有十分重要的应用。
SVD算法本质:
SVD算法本质是:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性。
SVD算法描述:
假设矩阵M是一个m×n阶矩阵,其中的元素全部属于域 K,也就是实数域或复数域。存在这样一个分解使得: