白噪声
白噪声序列,是指白噪声过程的样本实称,简称白噪声。白噪声是在较宽的频率范围内,各等带宽的频带所含的噪声能量相等的噪声,是一种功率频谱密度为常数的随机信号或随机过程,也就是说,此信号在各个频段上的功率是一样的。
对于一个随机变量X(t)(t=1,2,3,⋅⋅⋅)X(t)(t=1,2,3,\cdot \cdot \cdot)X(t)(t=1,2,3,⋅⋅⋅),如果是由一个不相关的随机变量的序列构成的,即对于所有s不等于t,随机变量X(t)和X(s)的协方差为零,则称其为纯随机过程。对于一个纯随机过程来说,若其期望为0,方差为常数,则称之为白噪声过程。
理想的白噪声具有无限的带宽,因而其能量无限大,这是不可能实际存在的,所以,我们把有限带宽内的平整讯号视为白噪声,以便我们实际应用当中的分析。一般情况下,若一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其功率谱密度基本为一常数,那么就能够把其作为白噪声来对待。
白噪声的功率密度函数恒定,为:
Pn(t)=n02(−∞<f<+∞)(W/HZ)Pn(t)=n0(0<f<+∞)(W/HZ)
P_n(t)=\frac{n_0}{2}(-\infty<f<+\infty)(W/HZ)
\\
P_n(t)=n_0(0<f<+\infty)(W/HZ)
Pn(t)=2n0(−∞<f<+∞)(W/HZ)Pn(t)=n0(0<f<+∞)(W/HZ)
其中n0n_0n0为常数。
高斯白噪声
高斯噪声指的是它的概率密度函数服从正态分布的噪声。高斯分布,记为N(u,σ2)N (u,\sigma^2)N(u,σ2),其中uuu为高斯分布的均值(数学期望),σ2\sigma^2σ2为高斯分布的方差,当u=0,σ2=1u=0,\sigma^2=1u=0,σ2=1时,该分布称为标准正态分布。高斯分布的一维概率密度可表示为式:
P(x)=12πσexp(−(x−u)22σ2)
P(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-u)^2}{2\sigma^2})
P(x)=2πσ1exp(−2σ2(x−u)2)
在通信信道中,一般噪声的均值μ=0μ=0μ=0。,那么可以得知当噪声的均值是零的时候,噪声的平均功率等于其方差。
高斯白噪声的高斯指的是概率分布为正态分布,白噪声指的是其二阶矩不相关一阶矩为常数。故把瞬时值的概率分布服从高斯分布,功率谱密度服从均匀分布的噪声称为高斯白噪声。这两个条件是判断高斯白噪声性能的标准。
由于高斯白噪声能够反映实际通信信道中的噪声情况,能够比较真实的反映信道噪声的一些特性,并且可以用具体的数学表达式表示,适合分析、计算系统的抗噪声性能,所以广泛应用于通信系统的理论分析。