给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
思路:用动态规划做,定义二维数组dp,规定dp[i][j]表示的是word1[0,i)转化成word2[0,j)所需要的最小步骤,首先进行初始化操作,因为任何字符串变成空字符串所需的最小步骤是字符串的size,同理任何空字符串变成字符串的最小步骤也是字符串的size,所以初始化如下:
for (int i = 0; i <= m; i++)
dp[i][0] = i;
for (int i = 0; i <= n; i++)
dp[0][i] = i;
然后再来看递推公式:
如果word1[i-1]==word2[j-1](即当前字符相同),那么相当于不用操作,所以dp[i][j]=dp[i-1][j-1]
如果word1[i-1]!=word2[j-1],那么我们怎么操作才能把word1[0,i)变成word2[0,j)呢,由于题目给了三种操作,分别是改变,插入,删除。
1:改变,对于这种情况,直接把word1[i-2]变成word2[j-1],dp[i][j]=dp[i-1][j-1]+1
2:插入,这个的意思是如果word1[0,i-1)插入一个字符和word2[0,j)相等,所以dp[i][j]=dp[i][j+1]+1
3:删除,如果word1[0,i)删除一个字符,和word2[0,j)相等,所以dp[i][j]=dp[i-1][j]+1
参考代码:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for (int i = 0; i <= m; i++)
dp[i][0] = i;
for (int i = 0; i <= n; i++)
dp[0][i] = i;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1[i - 1] == word2[j - 1])
dp[i][j] = dp[i - 1][j - 1];
else {
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[m][n];
}