FlinkSQL sink 到 kafka 中的分区分配规则

本文深入探讨了Flink SQL中Kafka connector的sink.partitioner参数,特别是默认的FlinkFixedPartitioner分区器的工作原理。分析了其在不同场景下的数据分布策略,并指出了可能遇到的问题,如数据不均衡和topic扩容时需要重启作业。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

场景

直接用 FlinkSQL 实现消费kafka中的数据,并经过一系列转换后sink到kafka另一个topic中。

INSERT INTO kafka_sink_table SELECT xxx FROM kafka_source_table

Flink SQLkafka connector里有一个参数sink.partitioner 1,如下:

  • fixed:每个Flink分区最多分配到一个Kafka分区中。
  • round-robin: Flink分区轮询被分配到Kafka分区中。
  • 自定义FlinkKafkaPartitioner子类:例如,“org.mycompany.MyPartitioner”

flink kafka sink 默认分区器 FlinkFixedPartitioner 原理与注意2

package org.apache.flink.streaming.connectors.kafka.partitioner;
 
import org.apache.flink.util.Preconditions;
 
public class FlinkFixedPartitioner<T> extends FlinkKafkaPartitioner<T> {
    private int parallelInstanceId;
 
    public FlinkFixedPartitioner() {
    }
 
    public void open(int parallelInstanceId, int parallelInstances) {
        Preconditions.checkArgument(parallelInstanceId >= 0, "Id of this subtask cannot be negative.");
        Preconditions.checkArgument(parallelInstances > 0, "Number of subtasks must be larger than 0.");
        this.parallelInstanceId = parallelInstanceId;
    }
 
    public int partition(T record, byte[] key, byte[] value, String targetTopic, int[] partitions) {
        Preconditions.checkArgument(partitions != null && partitions.length > 0, "Partitions of the target topic is empty.");
        return partitions[this.parallelInstanceId % partitions.length];
    }
}

根据源码可以看出:

flink是根据sink的subtask的id和kafka的partition数量进行取余计算的,计算过程如下:

  • flink并行度为3(F0,F1,F2),partition数量为2(P0,P1),则F0->P0,F1->P1,F2->P0

  • flink并行度为2(F0,F1),partition数量为3(P0,P1,P2),则F0->P0,F1->P1

因此默认分区器会有2个坑:

  • 当 Sink 的并发度低于 Topic 的 partition 个数时,一个 sink task 写一个 partition,会导致部分 partition 完全没有数据。

  • 当 topic 的 partition 扩容时,则需要重启作业,以便发现新的 partition。


  1. https://ci.apache.org/projects/flink/flink-docs-release-1.11/zh/dev/table/connectors/kafka.html#connector-options ↩︎

  2. https://blog.csdn.net/join_null/article/details/103049973 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香山上的麻雀1008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值