HDU 5606_基础并查集

本文讨论了使用并查集解决最短路径问题的方法,重点在于通过合并边权为0的顶点来简化计算过程,最终通过异或运算得到结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:n个点,n-1条边及其边的权值(0、1);求每个顶点与它距离最近的点的个数,最后对所有的值进行异或运算。

分析:由题意可知, 求最短距离即求边权为0,。
考虑用并并查集将边权为0 的顶点合并,同时记录每个集合元素的个数。

http://acm.hdu.edu.cn/showproblem.php?pid=5606

#include<cstdio>
#include<iostream>
using namespace std;
#define N 100005
int father[N],Rank[N],num[N];
void init()
{
    for(int i=0;i<N;i++){
        father[i]=i;
        num[i]=1; //初始化,每个集合元素个数为1,每个顶点本身也要算在内
    }
}
int find(int x)
{
    if(x!=father[x])
        father[x]=find(father[x]);
    return father[x];
}
void Union(int x,int y)
{
    x=find(x);
    y=find(y);
    if(x==y)
        return ;
    father[y]=x;
    num[x]+=num[y];//加权合并
}
int main()
{
    int t,n,a,c,b;
    scanf("%d",&t);
    while(t--){
            init();
        scanf("%d",&n);
        for(int i=1;i<n;i++){
            scanf("%d%d%d",&a,&b,&c);
            if(!c)    //合并边权为0的两个点
                Union(a,b);
        }
        int s=0;
        for(int i=1;i<=n;i++)
              s^=num[find(i)];
        printf("%d\n",s);
    }
    return 0;
}
### HDU 3342 并查集 解题思路实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一条路径使得两个人可以通过中间人的链条相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不相交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节点以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值