数据的格式转化

本文介绍了如何将txt文件转换为csv并进一步转化为parquet格式,同时提供了两种处理大文件csv时避免内存溢出的方法:使用chunksize分块读取和iterator逐块获取数据。适合处理大数据文件的高效读取和转换技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.读取txt文件为csv格式

df = pd.read_csv(file, header=None)

2.将csv格式转化为parquet

df.to_parquet(fout_path)
df= pd.read_parquet(fin_path)

3.读取csv文件时memory error

pd.read_csv读取大文件时,如果文件太大,会出现memoryerror的问题。

方法1

pd.read_csv的参数中有一个chunksize参数,为其赋值后,返回一个可迭代对象TextFileReader,对其遍历即可

reader = pd.read_csv(file_path, chunksize=20)  # 每次读取20条数据

 import pandas as pd 
 
 def knn():
     # 读取数据
     file_path = './facebook/train.csv'
     
     reader = pd.read_csv(file_path, chunksize=20)    # 每块为20条数据(index)
 
     for chunk in reader:
         print(chunk) #chunk格式是<class 'pandas.core.frame.DataFrame'>
         break
 
 if __name__ == '__main__':
     knn()

方法2

pd.read_csv的参数中有一个iterator参数,默认为False,将其改为True,返回一个可迭代对象TextFileReader,使用它的get_chunk(num)方法可获得前num行的数据

import pandas as pd 

def knn():
    '''完成k近邻算法'''

    # 读取数据
    file_path = './facebook/train.csv'

    reader = pd.read_csv(file_path, iterator=True)
    chunk = reader.get_chunk(5)    # 获取前5行数据
    print(chunk)


if __name__ == '__main__':
    knn()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值