Tensorflow 2.0 目标识别(一)——环境确认

本文档详细介绍了在Windows 10环境下,配置Tensorflow 2.0进行目标识别的过程,强调了Python 3.6与TF2.0的兼容性,以及GPU驱动版本和CUDA配置的重要性。内容包括环境变量设置、开发环境(VS2017与PyCharm)的准备,以及检查Python版本的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow 1.*的坑没完全入,TF 2.*就开始了。市面上教程1.*和2.*的混杂,python 3.6与3.7,TF2.0A版本与TF2.1版本,CUDA9.0与CUDA10.0等等均会出现问题,TF果然和笔者之前学习的Emgucv一样,想升级就升级,全然不顾开发者的死活。

无奈最近项目开始需要很多目标识别的需求,只能忍着一步步重新搭建环境。

全部过程会遇到很多很多和路径以及版本相关的描述,仿照的哥们真的真的请仔仔细细的跟。

先描述下笔者的环境:

操作系统: windows 10家庭中文版,64-bit

处理器:Inter(R)Core(TM)i7-7700HQ

显卡(GPU):GeForce GTX 1060(驱动版本441.22),不确定的请在NVIDIA控制面板-帮助-系统信息 里面查看,驱动程序版本很重要,后面需要。

python环境:我先装的3.7后来发现3.6和TF2.0更配,就都都装了,切换的话记得

系统属性-高级-环境变量-系统变量-Path-编辑 里面修改到3.6

开发环境:vs2017(习惯界面)以及 pycharm 2019.3.2(无奈妥协)

vs平台-工具-python-python环境,选中后右侧会出现环境配置,直接有最好,没有的自己+自定义,配置ok的可以中间概述的下拉框内选第二项包(PyPi),看到所有已经安装的包。(如果是空的也没什么问题,选第三项intelliSense或

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值