Tensorflow 2.0 目标识别(二)——CUDA&CUDNN安装

本文介绍了如何在Tensorflow 2.0环境下安装CUDA和CUDNN。首先,从官方地址下载适用于特定显卡驱动的CUDA 10.2版本。然后,注册NVIDIA账号并下载CUDNN,将其解压并放入CUDA安装目录。最后,设置环境变量并验证安装成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上文要求各位检查自己显卡,和操作系统。

CUDA到下文地址,默认是最新的10.2,注意自己显卡驱动版本选择合适的版本。

https://developer.nvidia.com/cuda-toolkit-archive

下载后默认安装, 记住路径,后面会用

CUDNN到下文下载,需要注册账号。agree后显示如下图片,选合适自己CUDA版本的CUDNN。

https://developer.nvidia.com/rdp/cudnn-download

下载后解压缩,重命名为cudnn放到cuda安装目录下:

 cudnn下目录结构如图,压缩包解压后会有个CUDA目录,CUDA目录里面才是我们要的,复制重命名的时候看仔细。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值