【每日一题】【算法题】【杨辉三角】给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行

本文介绍了解决杨辉三角问题的两种高效算法。第一种算法通过优化内存使用,仅保留当前层和上一层的结果,减少空间复杂度。第二种算法则基于组合数公式,直接计算每一项的值,同时介绍了如何进一步优化计算过程,避免重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 解法一:我们只需要一层一层的求。但是不需要把每一层的结果都保存起来,只需要保存上一层的结果,就可以求出当前层的结果了。

public List<Integer> getRow(int rowIndex) {
    List<Integer> pre = new ArrayList<>();
    List<Integer> cur = new ArrayList<>();
    for (int i = 0; i <= rowIndex; i++) {
        cur = new ArrayList<>();
        for (int j = 0; j <= i; j++) {
            if (j == 0 || j == i) {
                cur.add(1);
            } else {
                cur.add(pre.get(j - 1) + pre.get(j));
            } 
        }
        pre = cur;
    }
    return cur;
}

优化:

  1. 每层的第一个元素始终为1。基于这两点,我们把之前j == 0 || j == i的情况移到了for循环外进行处理。
  2. 最后一个也是1,也移到内循环的外面。
  3. 把pre与cur省去,然后把cur当作pre,用temp存j的数据,赋值给pre,更新j+1时用pre+j的值
public List<Integer> getRow(int rowIndex) {
    int pre = 1;
    List<Integer> cur = new ArrayList<>();
    cur.add(1);
    for (int i = 1; i <= rowIndex; i++) {
        for (int j = 1; j < i; j++) {
            int temp = cur.get(j);
            cur.set(j, pre + cur.get(j));
            pre = temp;
        }
        cur.add(1);
    }
    return cur;
}

  • 解法二 公式法

如果熟悉杨辉三角,应该记得杨辉三角其实可以看做由组合数构成。


根据组合数的公式,将(n-k)!约掉,化简就是下边的结果。

^{C{n}^{k}}=n!/(k!(n−k)!)=(n∗(n−1)∗(n−2)∗...(n−k+1))/k!

然后我们就可以利用组合数解决这道题。

public List<Integer> getRow(int rowIndex) {
    List<Integer> ans = new ArrayList<>();
    int N = rowIndex;
    for (int k = 0; k <= N; k++) {
        ans.add(Combination(N, k));
    }
    return ans;
}

private int Combination(int N, int k) {
    long res = 1;
    for (int i = 1; i <= k; i++)
        res = res * (N - k + i) / i;
    return (int) res;
}

我们可以优化一下。
上边的算法对于每个组合数我们都重新求了一遍,但事实上前后的组合数其实是有联系的。
^{C{n}^{k}}​=^{C{n}^{k-1}}​×(n−k+1)/k
代码的话,我们只需要用pre变量保存上一次的组合数结果。计算过程中,可能越界,所以用到了long。

public List<Integer> getRow(int rowIndex) {
    List<Integer> ans = new ArrayList<>();
    int N = rowIndex;
    long pre = 1;
    ans.add(1);
    for (int k = 1; k <= N; k++) {
        long cur = pre * (N - k + 1) / k;
        ans.add((int) cur);
        pre = cur;
    }
    return ans;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值