17 散列表(下):为什么散列表和链表经常会一起使用?
1. 为什么散列表和链表经常放在一起使用?
- 散列表的优点:支持高效的数据插入、删除和查找操作
- 散列表的缺点:不支持快速顺序遍历散列表中的数据
- 如何按照顺序快速遍历散列表的数据?只能将数据转移到数组,然后排序,最后再遍历数据。
- 我们知道散列表是动态的数据结构,需要频繁的插入和删除数据,那么每次顺序遍历之前都需要先排序,这势必会造成效率非常低下。
- 如何解决上面的问题呢?就是将散列表和链表(或跳表)结合起来使用。
2. 散列表和链表如何组合起来使用的案例
- LRU(Least Recently Used)缓存淘汰算法
LRU缓存淘汰算法主要操作有哪些?主要包含3个操作:
1)往缓存中添加一个数据;
2)从缓存中删除一个数据;
3)在缓存中查找一个数据;
总结:上面3个都涉及到查找。
如何用链表实现LRU缓存淘汰算法?
1)需要维护一个按照访问时间从大到小的有序排列的链表结构。
2)缓冲空间有限,当空间不足需要淘汰一个数据时直接删除链表头部的节点。
3)当要缓存某个数据时,先在链表中查找这个数据。若未找到,则直接将数据放到链表的尾部。若找到,就把它移动到链表尾部。
4)前面说了,LRU缓存的3个主要操作都涉及到查找,若单纯由链表实现,查找的时间复杂度很高为O(n)。若将链表和散列表结合使用,查找的时间复杂度会降低到O(1)。
如何使用散列表和链表实现LRU缓存淘汰算法?
1)使用双向链表存储数据,链表中每个节点存储数据(data)、前驱指针(prev)、后继指针(next)和hnext指针(解决散列冲突的链表指针)。
2)散列表通过链表法解决散列冲突,所以每个节点都会在两条链中。一条链是双向链表,另一条链是散列表中的拉链。前驱和后继指针是为了将节点串在双向链表中,hnext指针是为了将节点串在散列表的拉链中。
3)LRU缓存淘汰算法的3个主要操作如何做到时间复杂度为O(1)呢?<