中文分词库jieba介绍

jieba是Python中优秀的中文分词库,采用前缀词典、动态规划及HMM模型进行分词。通过构建字典树和有向无环图(DAG)实现高效分词,对于未登录词,利用HMM进行解码处理。分词方法包括`cut`和`cut_for_search`,支持自定义词典和关键词提取功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.jieba库是较好的中文分词词库

2.jieba库分词思想有三步:定义前缀词典,构建字典树;生成句子有向图,路径规划输出最优路径;基于HMM模型求解decoding问题

3.生成句子有向图本质是贝叶斯网络,路径规划实质是求解联合概率分布

4.jieba的HMM模型的隐状态有四种:BMES,基于大量语料库初始化参数(初始概率分布,转移矩阵和发射矩阵)

分词是对文本预处理重要环节,英文分词可以针对空格切分达到很好的效果。而中国文字博大精深,需要用一定的方法处理。本文就介绍基于python第三方库jieba分词库,它是比较好的中文分词词库。jieba库的分词原理主要有三项:

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的向无环图(DAG)

  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合

  • 对于未登录词,采用了基于汉字成词能力的HMM模型,使用Viterbi算法求解

前缀词典与DAG

首先是前缀词典的扫描。jieba库是利用了Tier树进行高效扫描,Tier树中文名叫字典树、前缀树。它的用途主要是将字符串整合成树形。

比如由“清华”、“清华大学”、“清白”、“中华”、“华夏”五个中文词构成的Tier树:

这个树里面每一个方块代表一个节点,其中根节点Root不代表任何字符;紫色代表分支节点;绿色代表叶子节点。除根节点外每一个节点都只包含一个字符。从根节点到叶子节点,路径上经过的字符连接起来,构成一个词。而叶子节点内的数字代表该词在字典树中所处的链路(字典中有多少个词就有多少条链路),具有共同前缀的链路称为串。

字典树有以下三个特点:

  • 具有相同前缀的词必须位于同一个串内

比如“清华”和“清白”两个词语,都有“清”这个前缀,那么在字典树上只需要构建一个“清”节点即可,这在一定程度减少存储空间。

  • 字典树中的词只可共用前缀,不可共用词的其他部分

比如“华夏”和“中华”,这两个词都有共同的后缀“华”,但在字典树上必须是两条独立的链路,即字典树仅依靠公共前缀压缩字典存储空间。再看“清华大学”这个词语,“大学”也是一个词语,但是“清华大学”的后缀,所以“大学”必须从根节点开始重新构建。

  • 一个完整的词必须从根节点开始,至叶子节点结束

字典树实质是一个有限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值