定义集合映射
f
:
Z
n
→
Z
n
f:\mathbb{Z_n}\rightarrow \mathbb{Z_n}
f:Zn→Zn,其中
f
(
x
)
=
x
⋅
m
(
m
o
d
n
)
,
x
∈
Z
n
f(x)=x\cdot m\pmod n,x \in\mathbb{Z_n}
f(x)=x⋅m(modn),x∈Zn
- 当 gcd ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1时,不妨设 m < n m < n m<n,则当 k 1 < k 2 k_1 < k_2 k1<k2,且 k 1 , k 2 < n k_1, k_2 < n k1,k2<n时,则有
m ⋅ k 1 ≠ m ⋅ k 2 ( m o d n ) ⟺ m ⋅ ( k 1 − k 2 ) ≠ 0 ( m o d n ) ⟺ n ∤ ( k 1 − k 2 ) ( m o d n ) m\cdot k_1\neq m\cdot k_2\ \pmod n \iff m\cdot (k_1-k_2)\neq 0\pmod n \iff\ n\nmid(k_1-k_2)\pmod n m⋅k1=m⋅k2 (modn)⟺m⋅(k1−k2)=0(modn)⟺ n∤(k1−k2)(modn)
这意味着在集合
Z
n
\mathbb{Z_n}
Zn 中,在函数
f
f
f 下
{
1
,
⋯
,
n
−
1
,
0
}
→
{
m
,
2
⋅
m
,
⋯
,
(
n
−
1
)
⋅
m
,
n
⋅
m
}
(
m
o
d
n
)
\{1,\cdots,n-1,0\}\rightarrow \{m,2\cdot m,\cdots,(n-1)\cdot m,n\cdot m \}\pmod n
{1,⋯,n−1,0}→{m,2⋅m,⋯,(n−1)⋅m,n⋅m}(modn)
即
{
m
,
2
⋅
m
,
⋯
,
(
n
−
1
)
⋅
m
,
n
⋅
m
}
\{m,2\cdot m,\cdots,(n-1)\cdot m,n\cdot m \}
{m,2⋅m,⋯,(n−1)⋅m,n⋅m} 为
{
1
,
⋯
,
n
−
1
,
0
}
\{1,\cdots,n-1,0\}
{1,⋯,n−1,0}的一个置换(permutation)
- 当 gcd ( m , n ) = t ≠ 1 \gcd(m,n)=t\neq 1 gcd(m,n)=t=1时,有
l c m ( m , n ) = m ⋅ n gcd ( m , n ) lcm(m,n)=\frac{m\cdot n}{\gcd(m,n)} lcm(m,n)=gcd(m,n)m⋅n
(lcm为Least Common Multiple)这意味着在集合
Z
n
\mathbb{Z_n}
Zn 中,在函数
f
f
f 下
{
1
,
⋯
,
n
−
1
,
0
}
→
{
m
,
2
⋅
m
,
⋯
,
(
l
c
m
(
m
,
n
)
m
−
1
)
⋅
m
,
l
c
m
(
m
,
n
)
m
⋅
m
}
(
m
o
d
n
)
\{1,\cdots,n-1,0\}\rightarrow \{m,2\cdot m,\cdots,(\frac{lcm(m,n)}{m}-1)\cdot m,\frac{lcm(m,n)}{m}\cdot m \}\pmod n
{1,⋯,n−1,0}→{m,2⋅m,⋯,(mlcm(m,n)−1)⋅m,mlcm(m,n)⋅m}(modn)
实际上
f
f
f 可以看成 同态映射(Homomorphic Mapping),且当
gcd
(
m
,
n
)
=
1
\gcd(m,n)=1
gcd(m,n)=1时,为 同构映射(Isomorphic Mapping),此时函数值序列为原序列的平凡子群,当
gcd
(
m
,
n
)
≠
1
\gcd(m,n)\neq1
gcd(m,n)=1时,函数值序列为原序列的非平凡子群(Subgroup),由 Lagrange’s theorem可以知道,当群
S
S
S 为群
G
G
G的子群时,
∣
S
∣
\lvert S\rvert
∣S∣ |
∣
G
∣
\lvert G\rvert
∣G∣,即子群元素个数整除原始群元素个数,在上述情况2中,子群(
S
S
S,+)中元素个数为
l
c
m
(
m
,
n
)
m
=
n
gcd
(
m
,
n
)
\frac{lcm(m,n)}{m}=\frac{n}{\gcd(m,n)}
mlcm(m,n)=gcd(m,n)n,群
(
G
,
+
)
(G,+)
(G,+)中元素个数为
n
n
n,子群(
S
S
S,+)的元素个数为
n
n
n 的因子。
另外当
gcd
(
m
,
n
)
≠
1
\gcd(m,n)\neq 1
gcd(m,n)=1 时,
f
f
f 为满射(Surjection),且不为入射(Injection),即存在
x
1
,
x
2
∈
Z
n
,
x
!
≠
x
2
x_1,x_2\in \mathbb{Z_n},x_! \neq x_2
x1,x2∈Zn,x!=x2 满足
f
(
x
1
)
=
f
(
x
2
)
f(x_1)=f(x_2)
f(x1)=f(x2)。于是定义关于任意函数
h
:
G
→
H
h:G\rightarrow H
h:G→H 映射的 核(Kernal):
k
e
r
(
h
)
=
{
x
∈
G
∣
h
(
x
)
=
1
H
}
ker(h)=\{x\in G|h(x)=1_H\}
ker(h)={x∈G∣h(x)=1H}
即函数
h
h
h的核为原像的集合
G
G
G的子集,这个子集的所有元素在 映射
h
h
h下 成为集合
H
H
H的单位元。
不难看出 k e r ( f ) ker(f) ker(f) 构成 ( Z n , + ) (\mathbb{Z_n},+) (Zn,+)的一个子群。
集合
k
e
r
(
f
)
=
{
n
gcd
(
n
,
m
)
,
2
⋅
n
gcd
(
n
,
m
)
,
⋯
,
gcd
(
n
,
m
)
⋅
n
gcd
(
n
,
m
)
=
n
}
ker(f)=\{\frac{n}{\gcd(n,m)},2\cdot\frac{n}{\gcd(n,m)},\cdots,\gcd(n,m)\cdot\frac{n}{\gcd(n,m)}=n \}
ker(f)={gcd(n,m)n,2⋅gcd(n,m)n,⋯,gcd(n,m)⋅gcd(n,m)n=n}
在函数
f
f
f 下映射为
(
Z
n
,
+
)
(\mathbb{Z_n},+)
(Zn,+)下的单位元
0
0
0,其大小为
∣
k
e
r
(
f
)
∣
=
gcd
(
n
,
m
)
\lvert ker(f)\rvert=\gcd(n,m)
∣ker(f)∣=gcd(n,m)。
在抽象代数里,上述概念是很多有用结论的背后原因,有了上述知识,可以很方便的理解一些题目
比如书本 I n t r o d u c t i o n t o c o d i n g t h e o r y ( 2006 , C a m b i r d g e U n i v e r s i t y P r e s s ) Introduction\ to\ coding\ theory\ (2006,Cambirdge\ University\ Press) Introduction to coding theory (2006,Cambirdge University Press)中有下题(可 ctrl+F搜索“Problem A.9”)
Problem A.9 Let a a a be an element of finite order in a group G G G.
Show that for every positive integer ℓ \ell ℓ,
a ℓ = 1 if and only if O ( a ) ∣ ℓ a^\ell=1\ \ \text{if and only if }\ \ \mathcal{O}(a)\mid \ell aℓ=1 if and only if O(a)∣ℓShow that for every positive integer n,
O ( a n ) = O ( a ) gcd ( O ( a ) , n ) \mathcal{O}(a^n)=\frac{\mathcal{O}(a)}{\gcd(\mathcal{O}(a),n)} O(an)=gcd(O(a),n)O(a)
证明:
- 反证法,假定
ℓ
=
k
⋅
O
(
a
)
+
r
\ell =k\cdot \mathcal{O(a)}+r
ℓ=k⋅O(a)+r,如果
O
(
a
)
∤
ℓ
\mathcal{O(a)}\nmid \ell
O(a)∤ℓ,因为
O
(
a
)
>
r
>
0
\mathcal{O(a)}>r>0
O(a)>r>0 且
a
O
(
a
)
=
1
a^{\mathcal{O(a)}}=1
aO(a)=1,于是有
a ℓ = a k ⋅ O ( a ) + r = ( a O ( a ) ) k ⋅ a r = a r = 1 a^{\ell}=a^{k\cdot \mathcal{O(a)}+r}=(a^{\mathcal{O(a)}})^k\cdot a^r=a^r=1 aℓ=ak⋅O(a)+r=(aO(a))k⋅ar=ar=1
此时 r < O ( a ) r<\mathcal{O(a)} r<O(a),这与 O ( a ) \mathcal{O(a)} O(a)的定义矛盾,故 O ( a ) ∣ ℓ \mathcal{O(a)}\mid \ell O(a)∣ℓ。
- 记
a
n
=
m
a^n=m
an=m,并记集合
S
S
S=
{
m
,
m
2
,
⋯
,
m
O
(
a
n
)
}
\{m,m^2,\cdots,m^{\mathcal{O(a^n)}} \}
{m,m2,⋯,mO(an)},集合
G
=
{
a
,
a
2
,
⋯
,
a
O
(
a
)
}
G=\{a,a^2,\cdots,a^{\mathcal{O(a)}} \}
G={a,a2,⋯,aO(a)},根据题目给定条件,我们知道集合
G
G
G在
∗
*
∗上构成群,且元素
a
a
a 为群
(
G
,
∗
)
(G,*)
(G,∗)的生成元,另外不难证得集合
S
S
S在
∗
*
∗上也构成群,于是群
(
S
,
∗
)
(S,*)
(S,∗)为群
(
G
,
∗
)
(G,*)
(G,∗)的子群。于是有
m O ( a n ) = a n ⋅ O ( a n ) = a O ( a ) = 1 m^{\mathcal{O(a^n)}}=a^{n\cdot \mathcal{O(a^n)}}=a^{\mathcal{O(a)}}=1 mO(an)=an⋅O(an)=aO(a)=1
这说明 O ( a n ) \mathcal{O(a^n)} O(an)是满足 O ( a ) ∣ n ⋅ k \mathcal{O(a)} \mid n\cdot k O(a)∣n⋅k 的最小正整数 k k k,即
O ( a n ) = arg min k ∈ Z + ( O ( a ) ∣ n ⋅ k ) = l c m ( O ( a ) , n ) n = O ( a ) ⋅ n gcd ( O ( a ) , n ) ⋅ n = O ( a ) gcd ( O ( a ) , n ) \mathcal{O(a^n)}=\arg\min_{k\in\mathbb{Z^+}}(\mathcal{O(a)} \mid n\cdot k)=\frac{lcm(\mathcal{O(a),n})}{n}=\frac{\mathcal{O(a)}\cdot n}{\gcd(\mathcal{O(a),n})\cdot n}=\frac{\mathcal{O(a)}}{\gcd(\mathcal{O(a)},n)} O(an)=argk∈Z+min(O(a)∣n⋅k)=nlcm(O(a),n)=gcd(O(a),n)⋅nO(a)⋅n=gcd(O(a),n)O(a)
于是得证。