基本概念
贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法解决的问题本身具有最优子结构性质,它可以用动态规划算法求解。但用贪心算法会更加的高效、简单、直接,所以其解体效率更高。因为贪心算法利用了问题的一些特殊的性质。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
它对有些问题是可以寻找到最优解的,例如,图的单源最短路径问题,最小生成树问题。
贪心算法基本要素
贪心选择性质
贪心选择性质指的是所求问题的整体最优解可以通过一系列的局部最优的选择,即通过选择策略来达到。这是贪心算法的第一个基本要素,也是贪心算法与动态规划算法的主要区别,动态规划每步的选择依赖于相关子问题的解。贪心算法中依赖于当前状态下的最好选择。
贪心策略的建立也是构建贪心算法的核心。
最优子结构
一个问题的最优解包含其子问题的最优解,称此问题具有最优子结构性质。问题的最有子结构性质是该问题可用动态规划或贪心算法求解的关键特征。
解题的一般步骤
- 建立数学模型来描述问题;.
- 把求解的问题分成若干个子问题;
- 对每一子问题求解,得到子问题的局部最优解;
- 把子问题的局部最优解合成原来问题的一个解。
相关例子
http://blog.csdn.net/qq_32400847/article/details/51336300
这篇博客中,整理了10个例子,有助于理解。