文章目录
一、引言与背景概述
1.1 视频目标检测的挑战与机遇
视频目标检测(Video Object Detection, VOD)作为计算机视觉领域的核心任务之一,相比静态图像检测面临着独特的挑战。在真实世界的视频流中,目标往往存在运动模糊、部分遮挡、光照变化等问题,而传统的基于单帧检测的方法如YOLO系列算法难以充分利用视频特有的时序信息。研究表明,视频帧间的时序关联蕴含着丰富的上下文信息,合理利用这些信息可以显著提升检测的准确性和鲁棒性。
YOLOv11作为Ultralytics公司推出的最新一代YOLO系列算法,在单帧目标检测任务中已经展现出卓越的性能。然而,将其直接应用于视频流处理时,仍然存在对时序信息利用不足的问题。我们的改进目标是通过引入ConvLSTM和Transformer模块,使YOLOv11具备捕捉帧间关联的能力,从而提升视频场景下的检测性能。
1.2 时序建模的技术路线选择
在视频目标检测领域,时序建模主要有三种技术路线:光流法、3D卷积和时序递归网络。光流法通过计算相邻帧间的像素位移来捕捉运动信息,但计算成本较高;3D卷积通过时空卷积核直接处理视频块,但参数量大且难以训练;而基于LSTM的递归网络则通过记忆机制建模长时依赖,在效率和性能间取得了较好平衡。
ConvLSTM作为LSTM的扩展,将全连接操作替换为卷积运算,使其能够同时捕捉时空特征,非常适合视频分析任务。Transformer则通过自注意力机制建立全局依赖,不受序列长度的限制。我们的改进方案将结合这两种机制的优点:使用ConvLSTM处理局部