1.安装顺序:先cuda(最好使用8.0,够了),再cudnn,python,pip升级,pip安装tensorflow。
2.适合的cudnn必须配套,一般有3套8,9,9.2,但现在似乎小版本号也有差别
https://developer.nvidia.com/rdp/cudnn-archive 各版本下载地址
3.tensorflow和他们也必须配套,这里1.3适合cuda8.0
4.cuda9.2网址 https://developer.nvidia.com/cuda-downloads,浏览器收藏有各版本cuda链接
cudnn网址 https://developer.nvidia.com/rdp/cudnn-download
5.清华大学镜像,可以修改版本号,CPU或gpu
pip install –-upgrade https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/gpu/tensorflow_gpu-1.3.0rc0-cp35-cp35m-win_amd64.whl
6.由于下载的cudnn里面显示cudnn为7,可以直接重命名为6,再放入cuda文件夹
7.实测证明1.3的tensorflow比0.12版本节省GPU资源,大大优化
<