Leetcode102-Binary Tree Level Order Traversal

问题描述

Given a binary tree, return the postorder traversal of its nodes’ values.
给定二叉树,返回层次遍历。
For example:
Given binary tree{1,#,2,3},

    3
   / \
  9  20
    /  \
   15   7

return its level order traversal as:

[
  [3],
  [9,20],
  [15,7]
]

解题思路

方法一
  1. 先把根节点放到queue里
  2. 用一个for循环遍历它们,找队首节点的左右两个子节点,放入到queue里(此时queue里的元素就是下一层的所有节点),将队首的值放到一维向量里
  3. for遍历完之后再把这个一维向量存到二维向量里
public List<List<Integer>> levelOrder(TreeNode root) {
        if(root == null) return new ArrayList<>();
        List<List<Integer>> twoD = new ArrayList<>();
        List<TreeNode> queue = new ArrayList<>();
        queue.add(root);
        while (!queue.isEmpty()){
            List<Integer> oneD = new ArrayList<>();
            for (int i = queue.size(); i > 0; i--) {
                TreeNode curNode = queue.remove(0);
                oneD.add(curNode.val);
                if(curNode.left != null)   queue.add(curNode.left);
                if(curNode.right != null)   queue.add(curNode.right);
            }
            twoD.add(oneD);
        }
        return twoD;
    }
方法二

递归法:

  1. 由于递归的特性,当要加入某个结点的时候,我们必须要知道当前的深度,所以使用一个变量level来标记当前的深度,初始化带入0,表示根结点所在的深度。
  2. 由于需要返回的是一个二维数组wrapList ,开始时我们又不知道二叉树的深度,不知道有多少层,只能在遍历的过程中不断的增加。当level等于二维数组的大小的时候,就需要新申请一层了。
  3. 递归左结点
  4. 递归右结点
  5. 将当前结点放入一维向量里。
public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> twoD = new ArrayList<>();
        digui(twoD, root, 0);
        return twoD;
    }

    public void digui(List<List<Integer>> twoD, TreeNode root, int level) {
        if(root == null) return;
        if(level >= twoD.size()) {
            twoD.add(new ArrayList<Integer>());
        }
        digui(twoD, root.left, level+1);
        digui(twoD, root.right, level+1);
        twoD.get(level).add(root.val);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值