你的数据治理属于哪个场景

本文探讨了企业在数据治理中的四个常见场景:创建数据管理系统、自下而上治理、自上而下规划治理和混合治理体系。每个场景都有其特点和挑战,如数据质量问题、战略规划不足、执行不力等。理想的方案是结合自上而下和自下而上的治理体系,但实施难度高,需考虑战略、文化、管理和技术等因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原创 理哥 数据治理体系 

一、前言


当前企业,基本上存有海量数据,目前最大的问题是质量较差,导致数据无法应用,所以一般企业的数据治理都围绕数据质量进行治理,根据我的经验,主要有如下4个数据管理治理场景,看下你们的项目属于哪个场景。

 

图片

二、数据管理治理场景


1.场景一,创建数据管理系统


一般公司都会创建一个或多个数仓系统存储数据数仓构建一般步骤和流程:3.数仓与商务智能->4.架构->6.数据建模和设计->7.数据存储->8.数据集成与互操作->系统测试上线推广

场景一从实战角度,一般从第3点数据仓库和商务智能这步开始,业务提出需求,需求分析人员进行需求分析,架构进行需求评估和总体架构设计,业务架构设计,技术架构设计,数据架构设计及周边关系设计,架构完成后直接进入数据建模和设计,此步完成后进入数据库环境设计配置,数据库环境和配置完成后,理论上要进行数据伦理安全评估和设计,一般项目是不太关注伦理和安全的,数据伦理和安全一般由公司层面总控,所以会直接进入数据集成与互操作,在这一步会完成数据逻辑和规则处理, 以及数据调度,监控等工作;

在新建数仓系统中数据质量的关注优先级会放的比较低,主要目标是实现业务需求,完成业务目标,在现有的数据中挖掘有用的信息,为业务和管理提供支持和决策。

2.场景二,自下而上数据治理


一般公司会以业务需求驱动自下而上数据治理自下而上一般步骤和流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值