三角函数的正交性
三角函数系
集合
{
s
i
n
0
x
,
c
o
s
0
x
,
s
i
n
x
,
c
o
s
x
,
s
i
n
2
x
,
c
o
s
2
x
,
.
.
.
}
\lbrace sin0x, cos0x, sinx,cosx,sin2x,cos2x,... \rbrace
{sin0x,cos0x,sinx,cosx,sin2x,cos2x,...}
正交
∫
−
π
π
s
i
n
n
x
c
o
s
m
x
d
x
=
0
\int_{-\pi}^{\pi} sin\;nx\;cos\;mx\;dx=0
∫−ππsinnxcosmxdx=0
∫
−
π
π
c
o
s
n
x
c
o
s
m
x
d
x
=
0
n
≠
m
\int_{-\pi}^{\pi} cos\;nx\;cos\;mx\;dx=0 \quad n \not= m
∫−ππcosnxcosmxdx=0n=m
正交意味着垂直
a
⃗
⋅
b
⃗
=
∣
a
⃗
∣
∣
b
⃗
∣
c
o
s
φ
\vec{a} \cdot \vec{b} = \mid \vec{a}\mid \mid \vec{b} \mid cos \varphi
a⋅b=∣a∣∣b∣cosφ
当
a
⃗
\vec{a}
a与
b
⃗
\vec{b}
b垂直的时候,
c
o
s
φ
=
0
cos \varphi = 0
cosφ=0
a
⃗
⋅
b
⃗
=
0
\vec{a} \cdot \vec{b}=0
a⋅b=0
举例:
a
⃗
=
(
2
,
1
)
b
⃗
=
(
−
1
,
2
)
\vec{a}=(2,1) \quad \vec{b}=(-1,2)
a=(2,1)b=(−1,2)
a
⃗
⋅
b
⃗
=
(
2
,
1
)
⋅
(
−
1
,
2
)
=
2
∗
−
1
+
1
∗
2
=
0
\vec{a} \cdot \vec{b}=(2,1) \cdot (-1,2) = 2*-1 + 1* 2 = 0
a⋅b=(2,1)⋅(−1,2)=2∗−1+1∗2=0
扩展:
a
⃗
=
(
a
1
,
a
2
,
a
3
,
.
.
.
a
n
)
\vec{a}=(a_1,a_2,a_3,...a_n)
a=(a1,a2,a3,...an)
b
⃗
=
(
b
1
,
b
2
,
b
3
,
.
.
.
b
n
)
\vec{b}=(b_1,b_2,b_3,...b_n)
b=(b1,b2,b3,...bn)
a
⃗
⋅
b
⃗
=
a
1
b
1
+
a
2
b
2
+
.
.
.
+
a
n
b
n
=
∑
i
=
1
n
a
i
b
i
=
0
\vec{a} \cdot \vec{b}=a_1 b_1 + a_2 b_2 + ...+ a_n b_n = \sum_{i=1}^n a_i b_i = 0
a⋅b=a1b1+a2b2+...+anbn=∑i=1naibi=0
进一步扩展:
a
=
f
(
x
)
a=f(x)
a=f(x)
b
=
g
(
x
)
b=g(x)
b=g(x)
a
⋅
b
=
∫
x
0
x
1
f
(
x
)
g
(
x
)
d
x
=
0
a \cdot b = \int_{x_0}^{x_1}f(x)g(x) dx =0
a⋅b=∫x0x1f(x)g(x)dx=0
当两个函数积分等于0的时候,我们说这两个函数正交。
证明
已知:
s
i
n
(
A
+
B
)
=
s
i
n
A
c
o
s
B
+
c
o
s
A
s
i
n
B
sin(A+B)=sinAcosB+cosAsinB
sin(A+B)=sinAcosB+cosAsinB
s
i
n
(
A
−
B
)
=
s
i
n
A
c
o
s
B
−
c
o
s
A
s
i
n
B
sin(A-B)=sinAcosB-cosAsinB
sin(A−B)=sinAcosB−cosAsinB
c
o
s
(
A
+
B
)
=
c
o
s
A
c
o
s
B
−
s
i
n
A
s
i
n
B
cos(A+B)=cosAcosB-sinAsinB
cos(A+B)=cosAcosB−sinAsinB
c
o
s
(
A
−
B
)
=
c
o
s
A
c
o
s
B
+
s
i
n
A
s
i
n
B
cos(A-B)=cosAcosB+sinAsinB
cos(A−B)=cosAcosB+sinAsinB
∫ − π π s i n n x c o s m x d x = ∫ − π π 1 2 [ s i n ( n − m ) x + s i n ( n + m ) x ] d x = 1 2 [ ∫ − π π s i n ( n − m ) x d x + ∫ − π π s i n ( n + m ) x d x ] = 1 2 [ − 1 n − m c o s ( n − m ) x ∣ − π π − 1 n + m c o s ( n + m ) x ∣ − π π ] = 0 + 0 = 0 \begin{aligned} \int_{-\pi}^{\pi} sinnx\;cosmx\;dx &= \int_{-\pi}^{\pi} \frac{1}{2}[sin(n-m)x+sin(n+m)x]dx \\ &= \frac{1}{2}[\int_{-\pi}^{\pi}sin(n-m)x \;dx+\int_{-\pi}^{\pi}sin(n+m)x \;dx] \\ &=\frac{1}{2}[-\frac{1}{n-m}cos(n-m)x \mid_{-\pi}^{\pi}-\frac{1}{n+m}cos(n+m)x \mid_{-\pi}^{\pi}] \\ &=0+0 \\ &=0 \end{aligned} ∫−ππsinnxcosmxdx=∫−ππ21[sin(n−m)x+sin(n+m)x]dx=21[∫−ππsin(n−m)xdx+∫−ππsin(n+m)xdx]=21[−n−m1cos(n−m)x∣−ππ−n+m1cos(n+m)x∣−ππ]=0+0=0
∫ − π π c o s n x c o s m x d x = ∫ − π π 1 2 [ c o s ( n − m ) x + c o s ( n + m ) x ] d x = 1 2 [ ∫ − π π c o s ( n − m ) x d x + ∫ − π π c o s ( n + m ) x d x ] = 1 2 [ 1 n − m s i n ( n − m ) x ∣ − π π + 1 n + m s i n ( n + m ) x ∣ − π π ] = 0 + 0 = 0 \begin{aligned} \int_{-\pi}^{\pi} cosnx\;cosmx\;dx &= \int_{-\pi}^{\pi} \frac{1}{2}[cos(n-m)x+cos(n+m)x]dx \\ &= \frac{1}{2}[\int_{-\pi}^{\pi}cos(n-m)x \;dx+\int_{-\pi}^{\pi}cos(n+m)x \;dx] \\ &=\frac{1}{2}[\frac{1}{n-m}sin(n-m)x \mid_{-\pi}^{\pi}+\frac{1}{n+m}sin(n+m)x \mid_{-\pi}^{\pi}] \\ &=0+0 \\ &=0 \end{aligned} ∫−ππcosnxcosmxdx=∫−ππ21[cos(n−m)x+cos(n+m)x]dx=21[∫−ππcos(n−m)xdx+∫−ππcos(n+m)xdx]=21[n−m1sin(n−m)x∣−ππ+n+m1sin(n+m)x∣−ππ]=0+0=0
当
m
=
n
m= n
m=n 时
∫
−
π
π
c
o
s
m
x
c
o
s
m
x
d
x
=
∫
−
π
π
1
2
[
1
+
c
o
s
2
m
x
]
d
x
=
1
2
[
∫
−
π
π
1
d
x
+
∫
−
π
π
c
o
s
2
m
x
d
x
]
=
1
2
[
∫
−
π
π
1
d
x
+
0
=
1
2
x
∣
−
π
π
=
π
\begin{aligned} \int_{-\pi}^{\pi} cosmx\;cosmx\;dx &= \int_{-\pi}^{\pi} \frac{1}{2} [1+cos2mx]dx \\ &=\frac{1}{2}[ \int_{-\pi}^{\pi} 1 dx+ \int_{-\pi}^{\pi}cos2mx dx] \\ &=\frac{1}{2}[ \int_{-\pi}^{\pi} 1 dx+0\\ &=\frac{1}{2}x \mid_{-\pi}^{\pi} \\ &=\pi \end{aligned}
∫−ππcosmxcosmxdx=∫−ππ21[1+cos2mx]dx=21[∫−ππ1dx+∫−ππcos2mxdx]=21[∫−ππ1dx+0=21x∣−ππ=π
原视频:
https://www.bilibili.com/video/av34364399/?spm_id_from=333.788.videocard.1