sgg2020微服务架构解析---12---sentinel

本文介绍了阿里巴巴开源的限流组件Sentinel,包括其下载地址、控制台安装启动方式及流控规则设置等内容。提供了访问控制台的步骤,以及如何进行组件测试的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看下github的介绍:https://github.com/alibaba/Sentinel

https://github.com/alibaba/Sentinel/wiki

中文文档:https://github.com/alibaba/Sentinel/wiki/%E4%BB%8B%E7%BB%8D

---111---二周目---

sentinel的下载地址:https://github.com/alibaba/Sentinel/tags

服务雪崩:https://blog.csdn.net/weixin_41509621/article/details/88296127

下载:

---

sentinel分为两部分:

安装控制台:

如何启动?

访问:http://localhost:8080/#/login

用户名和密码都是sentinel

java -jar /Users/fandayong/codeMy/sentinel-dashboard-1.7.0.jar 

是880默认端口的。

---112---

组件的初始化:

第一步:

第二步:访问测试下

localhost:8401/testA

localhost:8401/testB

---113--二周目---

---114---二周目---

关于流控规则:

---115---二周目---

内容概要:本文档提供了关于“微型车间生产线的设计与生产数据采集试验研究”的毕业设计复现代码,涵盖从论文结构生成、机械结构设计、PLC控制系统设计、生产数据采集与分析系统、有限元分析、进度管理、文献管理和论文排版系统的完整实现。通过Python代码和API调用,详细展示了各个模块的功能实现和相互协作。例如,利用SolidWorks API设计机械结构,通过PLC控制系统模拟生产流程,使用数据分析工具进行生产数据的采集和异常检测,以及利用进度管理系统规划项目时间表。 适合人群:具有机械工程、自动化控制或计算机编程基础的学生或研究人员,尤其是从事智能制造领域相关工作的人员。 使用场景及目标:①帮助学生或研究人员快速搭建和理解微型车间生产线的设计与实现;②提供完整的代码框架,便于修改和扩展以适应不同的应用场景;③作为教学或科研项目的参考资料,用于学习和研究智能制造技术。 阅读建议:此资源不仅包含详细的代码实现,还涉及多个学科领域的知识,如机械设计、电气控制、数据分析等。因此,在学习过程中,建议读者结合实际操作,逐步理解每个模块的功能和原理,并尝试调整参数以观察不同设置下的系统表现。同时,可以参考提供的文献资料,深入研究相关理论和技术背景。
本次的学生体质健康信息管理网站,按照用户的角色可以分为教师与学生,后台设置管理员角色来对学生的信息进行管理。,设计如下: 1、后台管理系统 后台管理系统主要是为该系统的管理员提供信息管理服务的系统,具体包括的功能模块如下: (1)管理员信息管理 (2)教师信息管理 (3)学生信息管理 (4)健康信息统计(图形化进行健康,亚健康等学生的信息数量统计) 2、教师角色的功能模块设计 教师角色所需要的功能模块主要包括了如下的一些内容: (1)个人资料修改 (2)学生体质健康管理:录入相关数据,包括但不限于身高、体重、肺活量、视力等生理指标以及运动能力、身体成分、骨密度等健康指标,并且设置健康,亚健康状态 (3)学生健康建议:根据体质信息,进行学生健康的建议 (4)健康预警:对健康出问题的学生,进行健康预警 (5)饮食和锻炼情况管理,查看 3、学生角色 学生角色可以通过该信息网站看到个人的基本信息,能够看到教师给与学生的健康建议等,功能模块设计如下: (1)个人资料修改 (2)我的健康建议查看 (3)我的健康预警 (4)饮食和锻炼情况管理,记录平时的饮食和锻炼情况 完整前后端源码,部署后可正常运行! 环境说明 开发语言:Java后端 框架:ssm,mybatis JDK版本:JDK1.8+ 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:eclipse/idea Maven包:Maven3.3+ 部署容器:tomcat7.5+
### 关于 HiKER-SGG 的 GitHub 项目文档和使用教程 目前公开的信息显示,HiKER-SGG 是一种用于场景图生成 (Scene Graph Generation, SGG) 的方法,其核心在于通过层次知识图来提升在复杂环境下的鲁棒性[^3]。然而,在已知的引用中并未提及具体的 HiKER-SGG GitHub 项目文档或官方使用教程。 以下是关于如何寻找或构建 HiKER-SGG 技术相关内容的一些建议: #### 寻找 HiKER-SGG 的资源 1. **论文作者主页**: 论文中提到的技术通常会由研究者发布在个人主页或其他学术平台上。可以通过查找论文的第一作者或通讯作者的相关页面,查看是否有额外的补充材料或代码链接。 2. **GitHub 和 GitCode 平台**: 虽然当前未找到特定的 HiKER-SGG 项目仓库,但可以尝试搜索关键词 `HiKER-SGG` 或类似的术语(如 `Hierarchical Knowledge Enhanced Robust Scene Graph Generation`),可能发现一些社区实现或实验版本[^2]。 3. **联系研究人员**: 如果确实无法找到现成的开源实现,可以直接通过邮件等方式联系论文中的研究团队成员,询问是否存在可用的代码库或计划发布的日期。 #### 构建 HiKER-SGG 的基础框架 如果决定自行开发 HiKER-SGG,则可以从以下几个方面入手: - **依赖安装**: 需要熟悉 Python 编程语言及其常用的深度学习框架(如 PyTorch)。此外还需要准备必要的工具包,比如 NumPy、Pandas 等科学计算库。 - **数据预处理**: 场景图生成任务往往依赖高质量的数据集作为输入源。Visual Genome 数据集是一个广泛使用的选项,它提供了丰富的对象标注关系信息。对于模拟恶劣天气条件下图像效果的情况,可考虑采用 OpenCV 库来进行人工合成噪声层叠加操作。 - **模型搭建与训练**: 基于描述可知该算法涉及到了多级特征提取过程以及最终的知识融合阶段。因此建议按照如下结构逐步完成网络定义工作: ```python import torch.nn as nn class FeatureExtractor(nn.Module): def __init__(self): super(FeatureExtractor, self).__init__() # Define layers here def forward(self, x): pass class KnowledgeFusionModule(nn.Module): def __init__(self): super(KnowledgeFusionModule, self).__init__() # Implement fusion logic between hierarchical features def forward(self, coarse_features, detailed_features): pass model = nn.Sequential( FeatureExtractor(), KnowledgeFusionModule() ) ``` #### 测试评估环节 最后一步是对整个系统性能进行全面评测。这不仅包括常规指标度量(Precision@K, Recall@K etc.), 还应该特别关注不同干扰因素下表现差异分析图表绘制等工作成果展示形式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值