笔记:ML-LHY: Recursive Structure

本文介绍了递归结构(Recursive Structure)在情感分析领域的应用,对比了其与循环网络(RNN)的区别,并探讨了几种不同的递归模型,包括矩阵向量递归网络和树LSTM等。此外还提到了递归模型在句子相似性判断等任务中的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单介绍RNN更通用的一个递归结构Recursive Structure,在Sentiment Analysis 情感分析上应用。
pdf 视频

Recurrent Structure and Recursive Structure

Sentiment Analysis 情感分析

在这里插入图片描述
上面 f f f都是同一个Function(hidden layer参数一样),循环网络可以看成是递归网络的特例。

Recursive Model

在这里插入图片描述

f函数需要设计成这样:
在这里插入图片描述
即输入2个词需要相乘,但是 x T W x x^TWx xTWx得到是一个scalar,所以进行vector size次: ∑ i = 0 V s i z e x T W i x \sum_{i=0}^{Vsize}x^TW_ix i=0VsizexTWix,再加上串联相乘: W x Wx Wx

demo:
在这里插入图片描述

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

另一种更复杂的f函数:

Matrix-Vector Recursive Network
在这里插入图片描述
词对应的vector可以拆分成包含自身信息的vector和包含影响其他词关系的matrix。

Tree LSTM
在这里插入图片描述

More Applications

处理可以做Sentiment Analysis ,也可以做Sentence relatedness在这里插入图片描述
NN输出的类别换成:相关、不相关、、、

以上参考李宏毅老师视频和ppt,仅作为学习笔记交流使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值