在这篇文章中,我们将介绍如何使用Together AI提供的嵌入模型来处理文本嵌入。Together AI为多种最先进的嵌入模型提供访问接口。本文将详细介绍如何设置环境、获取API密钥以及使用示例代码。
设置环境
如果你在使用Colab Notebook,你可能需要安装相应的依赖包。
# 安装依赖包
%pip install llama-index-embeddings-together
!pip install llama-index
获取API密钥
首先,你需要访问 Together AI 并注册一个API密钥。
# 设置API密钥
import os
os.environ["TOGETHER_API_KEY"] = "your-api-key"
使用示例
下面是一个使用Together AI进行文本嵌入的示例代码:
from llama_index.embeddings.together import TogetherEmbedding
# 初始化嵌入模型
embed_model = TogetherEmbedding(
model_name="togethercomputer/m2-bert-80M-8k-retrieval",
api_key=os.environ["TOGETHER_API_KEY"] # 使用中专API地址
)
# 获取文本嵌入
embeddings = embed_model.get_text_embedding("hello world")
print(len(embeddings)) # 输出嵌入向量的长度
print(embeddings[:5]) # 输出嵌入向量的前5个值
# 输出示例
768
[-0.11657876, -0.012690996, 0.24342081, 0.32781482, 0.022501636]
可能遇到的错误
- API密钥错误:如果API密钥不正确或失效,你将无法获取嵌入结果。请确保你的API密钥正确无误。
- 网络问题:如果网络连接不稳定,可能会导致请求失败。请确保你的网络连接正常。
- 依赖包未安装:如果依赖包未正确安装,会导致ImportError。请确保所有依赖包已正确安装。
如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!
参考资料: