使用Marqo向量数据库构建高效的文本检索系统
引言
在现代AI应用中,高效的文本检索系统是不可或缺的组成部分。本文将介绍如何使用Marqo向量数据库来构建一个强大的文本检索系统。Marqo是一个开源的向量搜索引擎,它不仅支持文本,还支持多模态数据如图像的存储和检索。本文将重点介绍Marqo的文本检索功能,并提供实用的代码示例。
Marqo简介
Marqo具有以下主要特点:
- 开源: 可以自由使用和修改
- 多模态: 支持文本和图像等多种数据类型
- 内置向量化: 使用开源模型自动为数据创建向量表示
- 灵活性: 支持自定义模型和索引
安装和设置
首先,我们需要安装必要的依赖:
pip install -qU langchain-community marqo
然后,我们可以使用Docker来运行Marqo服务:
docker pull marqoai/marqo:latest
docker rm -f marqo
docker run --name marqo -it --privileged -p 8882:8882 --add-host host.docker.internal:host-gateway marqoai/marqo:latest
文本索引和检索
让我们通过一个具体的例子来看看如何使用Marqo进行文本索引和检索。
1. 准备数据
首先,我们需要加载和分割文本数据:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Marqo
from langchain_text_splitters import CharacterTextSplitter
# 加载文本
loader = TextLoader("path/to/your/document.txt")
documents = loader.load()