【第十二周】李宏毅机器学习笔记10:生成式对抗网络2

摘要

本周主要学习了上周关于生成式对抗网络的剩余知识,了解了为什么 GAN 难以训练。此外,还学习了如何去评估 GAN 的性能以及在训练 GAN 过程中比较容易遇到的问题。最后还学习了条件生成对抗网络以及如何实现在非配对数据中学习。

Abstract

This week, I mainly reviewed the remaining knowledge about Generative Adversarial Network studied from last week and understood why the GANs are difficult to train. In addition, I also learned how to evaluate the performance of GANs and common problems encountered during the process training GANs. Finally, I learned Conditional GAN and how to implement learning from unpaired data.

1.GAN is Still Challenging

在这里插入图片描述

Generator 和 Discriminator 两部分是互动的,一旦一个出现问题,那么训练可能就停下来了,两者一定要棋逢对手。因为我们不能保证每次训练的 loss 都能降低,所以对 GAN 进行训练是一件很困难的事情。

在这里插入图片描述
当我们把 GAN 用于文字生成任务时,当 Decoder 的参数发生微小的变化时,得到的分布也会随之发生微小的变化,但是对于生产出来的文字并没有发生变化,因此 Discriminator输出的分数也不会发生改变,于是无法计算微分也就不能使用梯度下降法 。

2.Evaluation of Generation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值