
OpenCV项目实践指南
文章平均质量分 96
本专栏以 Python-OpenCV 为核心工具,从零基础入门到工业级项目实战。内容涵盖环境搭建与基础操作、图像处理核心技术、经典算法解析、行业应用实战(人脸识别、自动驾驶、工业检测等)。专栏介绍 20+ 实战项目,如智能停车场系统、医学影像分析、AR 增强现实等。
AI technophile
计算机科学与技术硕士研究生,技术爱好者,期待与大家共同学习~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OpenCV计算机视觉实战(20)——光流法运动分析
在视频分析与动态视觉系统中,光流 (Optical Flow) 技术是一种关键的运动估计方法。它通过分析连续帧之间像素强度的变化,估计图像中每个像素的运动方向与速度,从而重建出视觉世界中的动态场景。光流技术主要分为稀疏光流和稠密光流两种类型。稀疏光流(如 Lucas–Kanade 方法)关注图像中的少量特征点,适合实时目标跟踪;而稠密光流(如 Farneback 方法)则估计每个像素的运动矢量,适合整体运动场分析与背景补偿。原创 2025-08-19 17:23:59 · 363 阅读 · 0 评论 -
OpenCV计算机视觉实战(19)——特征描述符详解
通过本文的介绍,我们系统回顾了从经典的 SIFT / SURF 到轻量级 ORB 的特征提取与描述方法,并结合特征匹配与 RANSAC 实现了鲁棒的图像几何校正。SIFT / SURF 在处理复杂纹理与尺度变化时具有极高的稳定性,而 ORB 则以其高效与可嵌入性,在实时场景中表现出色。最后,通过合理的匹配策略与 RANSAC 的离群点剔除机制,我们能够在嘈杂背景下提取出可靠的点对,实现图像的精准配准与后续处理。特征描述子的合理选择与匹配策略的优化,是构建高效视觉系统的关键基础。原创 2025-08-11 17:35:06 · 647 阅读 · 0 评论 -
OpenCV计算机视觉实战(18)——视频处理详解
本文围绕视频处理的三个核心环节——读写帧处理、运动检测与摘要生成,构建了一个基于 Python + OpenCV 的完整视频分析工作流。通过帧级并发处理提升效率,利用背景差分法精准提取动态目标,并融合图像特征与聚类方法高效生成视频摘要,为多媒体内容理解奠定基础。原创 2025-08-04 11:52:05 · 1209 阅读 · 2 评论 -
OpenCV计算机视觉实战(17)——特征点检测详解
在计算机视觉中,角点 (`Corner`, 也称特征点) 是图像中特征信息最丰富的点,对应周围像素灰度在两个正交方向均有显著变化。准确检测并定位角点,对于后续的图像配准、运动跟踪和三维重建等任务至关重要。本文将介绍并实现经典的 Harris 角点检测、改进的 Shi-Tomasi 算法以及亚像素级角点优化。原创 2025-07-24 10:52:13 · 1226 阅读 · 0 评论 -
OpenCV计算机视觉实战(16)——图像分割技术
本节从分水岭的高程地图思路切入,讲解如何借助距离变换与连通组件构建水漫分割,再通过 GrabCut 的图割模型与用户交互实现更高精度的前景去背,最后以 FloodFill 的种子驱动方式演示快速区域生长。三者各有侧重,却可互为补充:分水岭适合自动化预分割,GrabCut 适合复杂边缘细化,FloodFill 则胜在简单直观和交互式应用。原创 2025-07-21 10:54:22 · 946 阅读 · 1 评论 -
OpenCV计算机视觉实战(15)——霍夫变换详解
本文介绍了霍夫变换在图像处理中的三大应用:1) 直线检测:通过Canny边缘检测和HoughLinesP提取特定角度的线段,适用于建筑分析和文档处理;2) 圆形检测:利用HoughCircles结合参数优化,可精准定位工业零件和医学影像中的圆形目标;3) 车道线检测:综合颜色筛选、ROI裁剪、透视变换和多项式拟合实现车道识别。原创 2025-07-14 11:17:02 · 799 阅读 · 0 评论 -
OpenCV计算机视觉实战(14)——直方图均衡化
在本文中,我们系统性地介绍了 CLAHE 自适应直方图均衡化、直方图反向投影以及基于颜色追踪的目标定位系统。这些方法不仅能显著增强图像的视觉质量,还能为实际工程项目提供稳健的技术支撑。CLAHE 通过分块与对比度限幅,有效提升了局部细节;反向投影利用颜色概率分布快速筛选目标区域;颜色追踪系统则将上述方法综合运用,实现了可扩展的动态目标跟踪方案。原创 2025-06-30 16:08:19 · 1043 阅读 · 0 评论 -
OpenCV计算机视觉实战(13)——轮廓检测详解
轮廓不仅是图像边缘的集合,更是图像理解的“骨架”。在本节中,我们深入探讨了轮廓层级的结构关系、凸包与缺陷的形状分析技巧,以及面积、周长、几何矩等轮廓特征的提取与应用。这些技术为图像分析提供了更丰富、更高维的语义信息。原创 2025-06-26 08:54:37 · 1145 阅读 · 4 评论 -
OpenCV计算机视觉实战(12)——图像金字塔与特征缩放
图像金字塔技术通过对原始图像按不同分辨率进行多层次表示,不仅能提升计算效率,还能为图像融合、检测与识别提供多尺度特征。高斯金字塔 (Gaussian Pyramid) 用于构建多级低通图像,拉普拉斯金字塔 (Laplacian Pyramid) 则提取各层之间的细节信息。本节将深入介绍如何使用 OpenCV 构建高斯与拉普拉斯金字塔,并以经典的图像融合案例,展示图像金字塔在特征缩放与融合中的强大应用。原创 2025-06-23 09:12:29 · 1026 阅读 · 0 评论 -
OpenCV计算机视觉实战(11)——边缘检测详解
在本节中,我们系统介绍了三大经典边缘检测算子,包括 Sobel 算子:一阶导数平衡了噪声抑制与边缘提取,结合方向信息可用于纹理分析与车道检测;Laplacian 算子:二阶导数对微小亮度突变尤为敏感,配合零交叉和细化技术,可精确捕捉任意方向的细节边缘;Canny 算法:集成多阶段处理与双阈值策略,通过多尺度融合与自适应阈值优化,达到抗噪与细节兼顾的卓越效果。原创 2025-06-18 09:26:25 · 3851 阅读 · 8 评论 -
OpenCV计算机视觉实战(10)——形态学操作详解
在本节中,我们介绍了腐蚀与膨胀:理解了结构元素的形状与尺寸如何影响图像噪声去除与连通性增强;开运算与闭运算:掌握了“先破后立”与“先立后破”的组合套路,轻松去除斑点与填补空洞;形态学梯度与骨架提取:学会了如何从二值图中提取清晰的边缘轮廓,并将复杂形状瘦身为一像素宽的中轴线。在实际项目中,我们可以根据噪声类型和应用需求,自由组合这些操作:先用开运算去噪,再用闭运算恢复结构,或在边缘检测和形状分析前加入梯度与骨架处理。原创 2025-06-04 09:19:27 · 1312 阅读 · 1 评论 -
OpenCV计算机视觉实战(9)——阈值化技术详解
在图像处理领域,阈值化 (Binarization) 技术就像一把魔术剪刀,能够将复杂的灰度图像一分为二,提取出关键的前景信息。无论是光照均匀的实验室拍摄,还是手机拍摄的阴影斑驳文档,选择合适的阈值化方法都至关重要。本文将介绍 OpenCV 中的三大阈值化法——全局阈值、自适应阈值与 Otsu 算法,剖析它们的原理与优缺点,并通过一个真实的文档扫描案例演示如何在实际场景下灵活组合与应用。原创 2025-05-29 08:32:39 · 1541 阅读 · 0 评论 -
OpenCV计算机视觉实战(8)——图像滤波详解
在本节中,我们从线性滤波(均值/高斯)的原理与参数调优入手,紧接着以非线性滤波(中值/双边)为重点,探讨了它们在各自噪声模型下的卓越表现与局限,最后,通过自定义卷积核实践,介绍如何使用 cv2.filter2D 实现锐化、边缘检测等多样效果。原创 2025-05-26 08:26:20 · 2065 阅读 · 1 评论 -
OpenCV计算机视觉实战(7)——色彩空间详解
本文深入探讨了三种常见色彩空间:RGB/BGR、HSV 与 CIELAB,并介绍了 OpenCV 中色彩空间转换的方法与原理 。在 HSV 与 Lab 空间部分,演示了如何利用 HSV 进行色彩分割,以及使用 Lab 空间进行颜色校正与色差分析。最后,展示了如何使用 cv2.calcHist 计算颜色直方图,并结合 Matplotlib 对 BGR 通道直方图进行可视化分析,以支持图像增强和基于颜色的检索任务 。原创 2025-05-22 08:28:02 · 1767 阅读 · 0 评论 -
OpenCV计算机视觉实战(6)——经典计算机视觉算法
计算机视觉是一个多学科交叉领域,目标是使机器能够理解和解释来自图像和视频的视觉信息。本节将介绍经典计算机视觉算法的关键原理、应用、优势和局限性,即使是在深度学习技术的出现之后,这些算法仍然具有重要意义,为图像分析、特征提取、分割、运动估计和目标检测奠定了基础。并在特定领域内对不同算法进行比较分析,展示经典算法在实际场景中的应用。原创 2025-05-19 08:19:41 · 2503 阅读 · 1 评论 -
OpenCV计算机视觉实战(5)——图像基础操作全解析
在本文中,我们首先从最底层的像素与 ROI 操作入手,理解了如何高效访问与修改图像数据;继而通过通道分离与合并,掌握了色彩处理与对比度增强的技巧;最后借助仿射与透视变换,实现了从基础平移、旋转到复杂校正的完整流程。原创 2025-05-15 11:13:28 · 1101 阅读 · 0 评论 -
OpenCV计算机视觉实战(4)——计算机视觉核心技术全解析
在本节中,介绍了计算机视觉中的常见任务。从讨论计算机视觉中的常见挑战开始,介绍了图像分类、检测和定位图像中对象、使用分割技术获取图像中的细粒度信息,最后讨论了光学字符识别。原创 2025-05-09 08:40:50 · 1004 阅读 · 1 评论 -
OpenCV计算机视觉实战(3)——计算机图像处理基础
本文全面介绍了计算机视觉和数字图像处理的基础知识。从最基本的像素概念入手,详细讲解了图像在计算机中的表示方式,包括RGB、CMYK等色彩空间的工作原理及其应用场景。还系统分析了常见图像和视频文件格式的特点,梳理了计算机图像处理技术的发展历程,并重点介绍了OpenCV这一强大的开源计算机视觉库的功能与应用领域。原创 2025-05-07 09:03:31 · 1296 阅读 · 2 评论 -
OpenCV计算机视觉实战(2)——环境搭建与OpenCV简介
OpenCV (Open Source Computer Vision Library) 是一个开源计算机视觉库,广泛应用于图像处理、机器视觉、人工智能等领域。本文将手把手教你从环境搭建到运行第一个 OpenCV 程序,包含图像的读取、显示、保存,以及使用摄像头实时捕获图像的基础操作。原创 2025-04-28 08:32:12 · 1319 阅读 · 0 评论 -
OpenCV计算机视觉实战(1)——计算机视觉简介
本节从计算机成像的历史开始,介绍图像表示、处理和操作,还介绍了数字图像处理,并简要解释了数字图像处理与模拟图像处理之间的区别。原创 2025-04-24 09:46:22 · 777 阅读 · 0 评论