eeg数据

一、EEG基本原理

        脑电信号,也称脑电图(EEG,Electroencephalography)是大脑神经元活动产生的电信号。神经元通过突触连接彼此,形成复杂的神经网络。当神经元激活时,会产生生物电现象,这些电信号可以通过电极放置在头皮上或直接植入大脑来捕捉。

图1 eeg信号原理

  • 快速动态变化:EEG信号在几毫秒内就能反映出大脑活动的变化。
  • 频率特性丰富:它包含多种频率成分,例如德尔塔波(0.5-4 Hz)、西塔波(4-8 Hz)、阿尔法波(8-13 Hz)、贝塔波(13-30 Hz)和伽马波(30 Hz以上)。
  • 头皮电极分布:EEG信号通过头皮上的电极获得,电极按照国际标准进行布局。

二、EEG的应用领域

睡眠研究和失眠症的诊断

神经系统疾病的检测,如帕金森病、阿尔茨海默病等

癫痫病的诊断和治疗

情绪、注意力、如脑机接口(BCI)等

三、EEG信号分析方法

0.可视化eeg数据

图2 EEG信号可视化

横轴:时间

纵轴:通道

可视化电极的位置

图3 电极可视化

1.预处理

(1) 滤波:消除高频噪声和低频漂移

        CEEMDAN算法通过自适应地估计噪声分量

具体步骤如下:

  1. 初始化:设置分解次数N,计算信号的均值m。

  2. 噪声估计:计算信号的标准差σ,并估计噪声分量为:

        n = σ * randn(size(x))

    3.去噪:将噪声分量从信号中减去,得到去噪后的信号:

        x_d = x - n

 4.去趋势化

去趋势化(Detrended Fluctuation Analysis),简称为DFA方法。对于这种方法可以简单理解为,信号本身具有内在的某种联系,而由于采集到的信号存在外部的噪声使得信号内部的联系函数之上叠加了多项式趋势信号,使得信号内部联系无法明确找到,DFA方法通过滤去序列中的各阶趋势成分,有效避免由于噪声和信号的不稳定而表现出来的伪关联的干扰。

去趋势化的原理便是通过对原数据的点状图图像减去一条拟合直线从而消去数据呈现出的趋势变化,这种方法可以呈现出数据的特征。

利用最小二乘法得到图像趋势的拟合曲线,因为是点状图所构成的,因此用相应点的纵坐标值减去所得拟合曲线对应横坐标下的纵坐标值,即为去趋势化后的图像。

Matlab中,detrend函数功能:去除多项式趋势

y = detrend(x)

y = detrend(x,n)

y = detrend(x,n,bp)

y = detrend(___,nanflag)

y = detrend(___,Name,Value)

y = detrend(x) 从 x 的数据中去除最佳直线拟合线。

如果 x 是向量,则 detrend 从 x 的元素中减去趋势。

如果 x 是矩阵,则 detrend 分别对每列进行运算,从对应的列中减去每个趋势。
 

t = 0:20;
x = 3*sin(t) + t;
y = detrend(x);
plot(t,x,t,y,t,x-y,':k')
legend('Input Data','Detrended Data','Trend','Location','northwest') 

y = detrend(x,n) 去除 n 次多项式趋势。

例如,当 n = 0 时,detrend 从 x 中删除均值。

当 n = 1 时,detrend 去除线性趋势,这等效于上述语法。

当 n = 2 时,detrend 去除二次趋势。

(2) 降采样:减少数据量和计算量

(3) 去伪迹:消除眼动、肌电等非脑电信号的干扰(非脑源性的伪迹,可能会掩盖真实的大脑活动信号)

  • 眼电伪迹(EOG):由于眼睛活动引起的,如眨眼、眼动等。
  • 肌电伪迹(EMG):肌肉张力变化导致的信号,如面部肌肉活动。
  • 心电伪迹(ECG):心脏电活动通过体液传播到脑电图中。
  • 50/60Hz干扰:来自电网的电磁干扰。

图4 主成分去伪迹

python mne脑电数据预处理教程 脑电信号数据预处理_mob64ca13f9a97c的技术博客_51CTO博客python mne脑电数据预处理教程 脑电信号数据预处理,学脑电的小伙伴对 matlab 软件和 eeglab 插件一定不会陌生,它们是脑电数据分析过程中的重要法宝。在对脑电数据进行分析处理之前需要先安装 matlab,在 matlab 中调用 eeglab 插件。在收集脑电数据的过程中,我们收集到的数据不可避免的会受到一些干扰,但是我们在进行分析之前需要相对干净的https://blog.51cto.com/u_16213589/8476425

参考资料:伪迹

https://cloud.tencent.com/developer/article/1745548

2.时域分析

3.频域分析(傅里叶)

4.时频分析(Stockwell Transform)

RNN神经网络分类脑电信号数据matlab_mob64ca12ec8020的技术博客_51CTO博客RNN神经网络分类脑电信号数据matlab,#RNN神经网络分类脑电信号数据matlab##引言脑电信号是一种记录大脑电活动的生理信号,它可以提供关于大脑功能和疾病诊断的重要信息。然而,脑电信号的分析和处理是一项复杂而困难的任务。在过去的几十年里,神经网络在脑电信号处理领域取得了广泛的应用。其中,循环神经网络(RNN)是一种特别适合处理时间序列数据的神经网络模型。本文将介绍如何使用RNN神经网络对脑电信号进行分类,并提供MATLAhttps://blog.51cto.com/u_16213415/7075756

### EEG数据预处理方法及步骤 EEG数据预处理是确保后续分析结果准确性和可靠性的关键步骤。以下是常见的EEG数据预处理方法和步骤,结合相关引用进行详细说明。 #### 1. 数据导入 首先需要将原始EEG数据导入到合适的工具中进行处理。常用的工具包括EEGLAB[^2]和MNE-Python[^3]。这些工具支持多种数据格式的导入,并提供了丰富的函数用于数据处理。 #### 2. 噪音通道检测与去除 在导入数据后,通常需要检测并去除噪声通道。PyPREP提供了一种自动化的方法来识别和标记噪声通道。通过这种方式可以有效减少由电极接触不良或其他外界干扰引起的噪声影响。 #### 3. 参考重构 选择适当的参考策略对于消除共模噪声至关重要。常见的参考策略包括平均参考或特定电极作为参考点[^3]。参考重构可以通过EEGLAB中的`pop_rereference`函数实现[^2]。 #### 4. 滤波 滤波是去除不需要频率成分的重要步骤。可以使用低通、高通、带通或带阻滤波器来保留感兴趣的信号频段,同时去除噪声[^5]。例如,在TMS-EEG实验中,可能需要特别注意去除TMS诱发的脉冲伪迹[^1]。 #### 5. 降采样 降低采样率可以显著减小数据量,从而提高计算速度[^5]。需要注意的是,降采样应在滤波之后进行,以避免丢失高频信息导致信号失真。此外,根据采样定理,采样率应至少为感兴趣波段频率的两倍,实际应用中建议三到四倍[^5]。 #### 6. 数据裁切 为了专注于特定时间段的数据,可以对数据进行裁切。这一步骤有助于减少不必要的数据处理时间,并集中分析感兴趣的事件相关活动[^2]。 #### 7. 独立成分分析(ICA) ICA是一种常用的技术,用于分离混合信号中的独立源信号。在EEG数据预处理中,ICA常用于识别和去除伪迹,如眼动伪迹、肌电伪迹等[^4]。通过EEGLAB中的FastICA工具,可以自动或手动识别并删除这些伪迹成分[^4]。 #### 8. 数据存储 完成所有预处理步骤后,应将处理后的数据保存以便后续分析。EEGLAB提供了方便的函数来保存处理后的数据集[^2]。 ```python # 示例代码:使用MNE-Python进行EEG数据预处理 import mne # 导入数据 raw = mne.io.read_raw_edf('example.edf', preload=True) # 设置蒙太奇 montage = mne.channels.make_standard_montage('standard_1020') raw.set_montage(montage) # 滤波 raw.filter(l_freq=1, h_freq=50) # 重参考 raw.set_eeg_reference('average') # 降采样 raw.resample(256) ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值