矩阵链乘法问题是一个经典的优化问题,目标是找到计算一系列矩阵相乘的最优顺序,即使得计算乘法的总次数最小化。
算法的核心思想是动态规划。假设有n个矩阵A1, A2, …, An,其中矩阵Ai的维度是d[i-1] * d[i]。定义m[i][j]为计算矩阵Ai到Aj的最优乘法次数,初始时将所有m[i][j]设置为无穷大。对于长度为l的链(i, j),通过枚举k (i ≤ k < j),将矩阵链划分为两部分(i, k)和(k+1, j),则总乘法次数为m[i][k] + m[k+1][j] + d[i-1] * d[k] * d[j]。通过计算出所有长度从2到n的链的最优乘法次数,最终可以得到计算整个矩阵链的最优乘法次数。
matrix chain multiplication矩阵链乘法算法的优点是能够找到一种最优的矩阵乘法顺序,从而最小化计算乘法的总次数,提高计算效率。它的缺点是需要存储大量的中间结果,占用较大的存储空间。
下面是使用C++实现matrix chain multiplication矩阵链乘法算法的示例代码:
#include <iostream>
#