Python ngram语言模型算法详解及源码

ngram语言模型是一种基于统计的自然语言处理方法,用于预测下一个词或短语在给定上下文中出现的概率。它主要基于n个连续的词或字符序列进行建模,通过统计语料库中的频率来估计出现的概率。

具体而言,ngram语言模型可以分为unigram、bigram、trigram等不同级别。unigram模型仅考虑单个词的出现概率,bigram模型考虑相邻两个词的概率,trigram模型考虑相邻三个词的概率。这些模型可以被用来计算给定上下文后出现下一个词的条件概率。

优点:

  1. 简单而直观:ngram语言模型的基本原理简单易懂,易于理解和实现。
  2. 上下文依赖:ngram模型考虑了上下文的影响,能够在一定程度上反映词之间的关联性。
  3. 高效快速:ngram模型建立在统计的基础上,计算速度较快。

缺点:

  1. 数据稀疏问题:n和数据规模相关,当n较大时,训练数据中出现的ngram序列较少,会导致模型估计不准确。
  2. 上下文限制:ngram模型只考虑有限的上下文,忽略了更长距离上下文的信息。

下面是一个用Python实现ngram语言模型算法的例子:

from collections import defaultdict
import random

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值