题目描述:
给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(mod ai)。
输入格式
第1行包含整数n。第2..n行:每i+1行包含两个整数ai和mi,数之间用空格隔开。
输出格式
输出最小非负整数x,如果x不存在,则输出-1。如果存在x,则数据保证x一定在64位整数范围内。
数据范围
1≤ai≤2^31−1,0≤mi<ai,1≤n≤25
输入样例:
2
8 7
11 9
输出样例:
31
分析:
首先,介绍下中国剩余定理。中国剩余定理给出了以下的一元线性同余方程组:
有解的判定条件,并用构造法给出了在有解情况下解的具体形式。中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组S有解,并且通解